
From evolving software towards models of dynamically
self-assembling processing systems

Uwe Tangen

7th April 2006

BioMIP Ruhr-University Bochum c/o BMZ Otto-Hahnstr. 15, 44227 Dortmund

Abstract
Several types of micro-controllers are put into a primordial soup abstracted as a

ring. The special feature of this setup is that self-replication is not possible. Micro-
controllers only have access to foreign program-code not to their own. It turns out that
the seeding programs vanish long before being able to proliferate when each program is
automatically granted access to the neighboring code. An active attachment-procedure
with a lock-and-key scheme (i.e. speci�c binding) is required to allow an evolutionary
start. As expected, the error-threshold [1] applies here as well. As a second step, these
fully �edged assembler programs are then partitioned into dynamical assembling pieces
of simple linear program pieces essentially without any further control-structures but
exhibiting the same functionality. Two di�erent micro-controllers are studied under
evolutionary conditions and longterm evolutionary behavior is investigated. A path-
way towards the direct simulation of self-assembling nanoscale chemistry is opened.

1 Introduction
The wish to understand the origin of complexity in life is as old as science and mankind.
With the advent of electronic computing machines, experimental studies [2, 3] have been
backed up by modeling on computers. The �rst serious scienti�c modeling of a self-
reproducing system was devised by von Neumann [4] in the attempt to deal with the
problem of an automaton capable of self-replication. Via a series of intermediate simpli�-
cations, Life as a game [5] marked as a general endpoint in developing simple deterministic
cellular automatons as model-platforms. In the seventies, Holland, the inventor of Ge-
netic Algorithms and Classi�er Systems [6, 7] created also the α-universe [8]. With this
model he tried to mimic the genetic replication apparatus in a one-dimensional simple
string-processing system. Unfortunately, McMullin [9] could show that side-reactions in
this model destroyed the self-reproducing capabilities of entities.

More or less parallel to this strand of research, the �rst observed computer-viruses
sparked research in evolving software, which became prominent with the game Corewars
[10], a collection of instruction-pointers of small von Neumann-micro-controllers work-
ing again on a one-dimensional circular string as was the case with Holland's α-universe.
Coreworld [11] and Tierra [12] followed this avenue and could at least show phenotypi-
cal behaviors found in the Cambrian explosion. Again unfortunately, Tierra has subtle
problems severely limiting the explanatory power of origin-of-life scenarios [13].

From a biological point of view, experimental studies in the sixties and seventies [14, 15,
16] led to the development of the quasi-species theory by Eigen [1], showing that replication
errors drastically limit the amount of information which can be stabilized in replicating
systems (error threshold). Further, Arti�cial Chemistry took a more operator-based view
from chemistry on the self-replicating computer entities [17, 18], see [19] for a review.
Trying to unite quasi-species theory and evolving software in micro-controllers gave rise

1

ck

ck−1

ck+1

ck+2

Figure 1: Spatial setup of the evolving software system. N containers with m individual
entities are connected like beads on a ring. Rare exchange events between neighboring
containers mimic a slow di�usion of particles along the ring.

to a combined model of stack-automata [20] which could demonstrate, again in a one-
dimensional ring of evolving entities, that spatial properties strongly a�ect evolutionary
properties. These spatial properties have been investigated in detail by McCaskill and
co-workers [21, 22] accompanying a series of experiments [23, 24, 25, 26] investigating
evolutionary properties of in vitro replicating systems. Combining spatial organization
with self-assembly then could show enormous evolutionary power in evolving multipliers
and other tillable optimization problems [27].

All these experimental and theoretical studies on replication and evolution culminated
in the endeavor to really build arti�cial cells, see protocell http://protocell.org for an
overview on some of these projects. Especially the EU-granted PACE project asks the
question on how computer-science can take advantage of possible information processing
in primitive arti�cial cellular organisms. One avenue in getting arti�cial cells realized is
described in Rasmussen et al.[28]. The central question in arti�cial cell research inevitably
will become how hereditary information in these cells can be stabilized and make an es-
sential contribution to the survival and robustness of these primitive entities. Though
quasi-species theory, spatial organization and arti�cial chemistries have provided impor-
tant insights into these types of problems a dynamical model showing the possibility of
robust algorithmic self-replication is still missing. The current paper tries to dig a little
bit further into this missing link between computer-science and biochemical experiments.

2 The model investigated here
The model presented has its roots in the attempt to extend the quasi-species theory with
functional properties, i.e. adding operators and simple stack-automata [20] and using
real massively parallel recon�gurable hardware [29, 30, 31, 32] investigating electronic
hardware evolution. Thus, the model is inspired by being realizable in real hardware and
in the context of the PACE project showing a route towards the realization in wet chemical
systems. Essentially the model is a population of processors and their programs interacting
pairwise in containers which are distributed in a one-dimensional topology.

2.1 Code-density-optimized micro-controller
Computing machines can be as simple as a Turing-machine and as complex as a mod-
ern XEON-processor from Intel. All realized computing machines always resemble a cer-
tain compromise between computing power, code-density, power-consumption and ease of
compiler-development. Especially, micro-controllers with very few resources su�er from
this compromise: code-density and power-consumption are central optimization criteria,
because most memory and thus silicon-area is consumed for storing the program in the

2

0 0 1

input A or reg.

sel.

R O

special or outport
O = 0, when special function is enabled
O = 1, when outport is written

R = 1, when register.−bank accessed

0 0

sel. reg. addr.

0

input A or reg.

R

R = 1, when register−bank accessed

10

sel.

const. value

reg. addr.

1

sel.

jump abs. prog. address

S

0
1

In
pu

t A

26
27
28
29
30

25
24
23

20
19
18
17
16

31

Command

2
3
4
5
6
7
8
9

STACK

10
11
12
13
14
15

Source chip
Source processor

21
22

Input−A
Input−B
Input−C
Input−D
Input−E
Input−F
Input−G
Input−H

Random

Recv. msg. byte
Recv. msg. ID

Recv. msg. type

jump:
0 = jump ZF

2 = jump CF
3 = jump not ZF
4 = jump not CF
5 = jump greater
6 = jump less or equal
7 = jump
8 = jump PF0
9 = jump PF1
a = jump PF2
b = jump PF3
c = jump PF4
d = jump PF5
e = jump PF6
f = jump PF7

1 = jump ELSE

sp
ec

ia
l p

ur
po

se
 r

eg
is

te
rs

37 = Recognition (high)

46 = current context (level) [ro]
45 = FLAGS (PF0−7) [ro]

40 = # of msg. elem. [ro]

38 = ID of dest chip

36 = Recognition (low)

39 = ID of dest processor_

32 = Work addr. low
33 = Work addr. high
34 = work area low byte
35 = work area high byte_

48 − 63 = Local registers (context)
47 = STACK_

0 − 31 = Registers (global)

Store (reg. addr.):

43 = data low byte_
44 = data high byte

41 = Data addr. low
42 = Data addr. high

POP stack

Push stack

Exchange stack

Write to stack

Copy stack

Clear stack

Fill stack

NOP

ClrCF

ClrZF

Return

Shift left

OR

XOR

Shift right

AND

ADD

Clr PFx Next message

Send message

Rewind message

Incorp. message

Clear Register

Release work

Attach work

’Attachment site

Reset message

Write msg. byte

New message

Halt

SUB

Attach unspecific

0x8

0x9

0xa

0xb

0xc

0xd

0x0

0x1

0x2

0x3

0x4

0x5

0x6

0x7

0xe

0xf

0x10

0x11

0x12

0x13

0x14

0x16

0x17

0x15

special function

0x19

0x1f

0x1c

0x1d

0x1e

0x1b

0x18

0x1a

1 = Call
0 = JMP
S:

2 = While
3 = DoWhile

0123456789101112131415

Exec

Store

Set

JMP

Figure 2: The code-density optimized micro-controller is a 16 bit micro-controller with
Harvard architecture and 8-bit wide registers. The additional data-memory area is 16-bit
wide and big enough to store a whole program of length 1024 instructions.

3

micro-controller. The micro-controller shown in Figure 2 is a late derivate of the sim-
ple micro-controller [33] provided by Xilinx, the commercial leader in recon�gurable logic
worldwide. A simple macro-assembler has been developed allowing the use of structured
programming constructs like if-then-else, for-next, while and do-while. A predecessor of
the micro-controller in Figure 2 has been realized and used in the machine MereGen [34].
Essentially, it is a 16-bit micro-controller in Harvard architecture with 8-bit wide registers
and a 16-bit wide data-area of size 2048 words. Standard arithmetic and Boolean opera-
tors are available with a small stack and a very primitive interrupt capability. Programs
can become as long as 1024 instructions and several input- and output-ports allow for the
communication with other processors. In addition, a message-passing-interface is provided
but the simulations reported here are not using messages at all.

2.2 Topology and processor interactions
Currently, the model is embedded in the more or less standard ring-topology already em-
ployed in the very many investigations exempli�ed before, see Figure 1. In the simulations
reported, the number N of containers is 32 and the number m of processors per container
is 16 in the standard case and 256 in the self-assembling case.

A container is a well-stirred reaction vessel with no further spatial organization. Each
processor is able to issue a command SITE, see Figures 2 and 5 which action is to identify
this processor in the container with a marker. This recognition site is stored in a binary
tree to allow for a rapid attachment procedure. Two di�erent types of attachment are
available (in the simulations used so far): speci�c and unspeci�c. Speci�c, means the at-
taching processor tells the environment exactly of what type the foreign processor has to
be. A molecular equivalent would be to change the molecule's conformation and present-
ing an attachment site to the environment but these functions also may be realized via
collections of molecules. In the case of the density optimized micro-controller in Figure
2, 64 di�erent recognition sites are possible. In the case of the more simpli�ed processor,
Figure 5, even 255 di�erent recognition sites can be addressed. The second type of attach-
ment is fully unspeci�c, meaning that a processor takes whatever processor is randomly
selected. Both types of attachment procedures assure that the processor cannot attach
itself. Currently each processor can have only one other processor attached at the same
time -> only bimolecular reactions are possible, this of course, can be easily extended in
the future. Each processor actively can detach (special command Release Work) its work-
load. This certainly is a major problem for macromolecules (dissociation problems always
were important in origin-of-life experiments) and has to be investigated further.

After a certain time, depending on the simulation parameters, two neighboring contain-
ers are randomly selected and from each a processor is picked at random. Both processors
are exchanged � essentially the program code is exchanged. In addition, depending on
the simulations parameters, processors in the containers are randomly subjected to muta-
tions � instructions are picked randomly and replaced by new random instructions. The
mutation probability speci�ed de�nes the probability of replacing a single instruction in
a program. Because this is no optimization study, genetic crossover or other types of
higher-level variation are not considered.

2.3 Enzyme-like replication assembler program
In the attempt to model chemical replications systems enzyme like replication seems to
be better suited than self-replication which usually are found in cellular organisms. The
seeding program being used in the simulations is shown in Figure 9 in the appendix 6. The
general control-�ow of the program is as follows: Try to establish contact to a neighboring
di�erent processor of a certain type (special command ATTACH, see recognition-sites
in section 2.2) which program-area is then mapped into the reach of this program (see
registers Work addr. low, Work addr. high, work area low byte and work area high byte).

4

In case of success of this attachment procedure a �ag is set and the program then copies at
least a part of the foreign code into its own data-area. When executed the next time the
program recognizes the �lled data area, tries to attach another processor, now unspeci�c
(see special command ATTACH UNSPECIFIC) and starts copying the data into the then
mapped code area of the foreign processor. Of course, each processor only is given a
certain slice of instructions executions and if the copying process is not �nished in time,
another processor starts execution and might destroy the already copied contents. Because
each active processor has full access to the code-area of the attached one, it can do all the
calculations necessary to improve robustness and/or to edit the contents at will. The active
processor does not have access to the inner-states of the attached one. No registers or �ags
or the memory in the data area are available from outside. On the other hand, a processor
just being mapped by a foreign processor has no knowledge about this fact. In addition, no
processor has access to its own code-area, making true self-replication impossible. Neither
is a processor able to get any information about its environment other then inspecting
the code-area of other processors. Of course, as has been pointed out by [9] and others,
this type of organization is extremely sensitive to perturbations from parasites and other
side-reactions in the system. A further problem is brittleness [11], making evolution of
about 130 instructions in this case extremely di�cult, because almost all mutations not
only lead to non-functional programs but to a considerable extent of programs acting as
side-reactions destroying other programs.

2.4 From structured towards dynamical assembled programming
Usually assembler-programs are like spaghetti-code. Macro-assemblers alleviate these highly-
optimized cryptic pieces of software. As has been outlined in section 2.1 essentially two
(typically four) di�erent types of control-structures are available for allowing universal
computation � if-then-else and while-do (the others switch-case and for-next can be easily
replaced by the former).

The central idea of self-assembling programs is to replace each sub-
block of these control-structures by a separate subroutine which is
no longer called as in the usual case but connected via an attachment
procedure (like co-factors in typical enzymatic reactions or runtime
loading of methods in object-oriented programming).
Note: If there are several subroutines with the same recognition site, a subrou-
tine is picked randomly.

The if-then-else construct becomes a special subroutine-call, e.g.

call_if == 0 free_working_area copy_working_area

and the while-do-loop is transformed into, e.g.

call_while > w_start_addr dau_to_work_loop,

meaning that if the accu has value zero then the subroutine free_working_area is exe-
cuted, or else the subroutine copy_working_area is executed. Or in the second example, as
long as the accu has a value greater than the value in register w_start_addr the function
dau_to_work_loop is called repeatedly. When control has been switched to a subrou-
tine the then active micro-controller can read the inner states and registers of the calling
micro-controller. Its own inner-states and registers are hidden then!

This simple shift in semantics has severe consequences. A program no longer is a big
continuous chunk of instructions but distributed onto several processors each able to ex-
ecute independently the subroutine. From the current 130 instructions 14 programs are

5

formed with a typical program length of only a few instructions. Not only the possibil-
ities of exploitation increase, an inherent robustness can be observed. Several copies of
a subroutine might exist, giving the calling program the chance to catch a subroutine
which is still functional. Of course, the opposite is also true: subroutines with the correct
recognition site but wrong program-code might also easily occur. It is to be expected that
the evolutionary behavior of a dynamically self-assembling system is basically di�erent to
classical software evolution.

2.5 Complexity measures
In the case of an absent optimization criterium, it is extremely di�cult to �nd out what
really is going on in the system. Tedious analysis of evolved programs is in many cases
impossible when dynamical self-assembly is in operation. The static view of the programs
does not tell which instance of a subroutine really had been taken. One possible way out of
this observation dilemma is to look at pattern repeats. The idea is that all sequences which
are evolutionary successful should be abundant because otherwise they might be wiped out
by accident. To look at the whole evolved system of programs, a special algorithm has
been developed which �nds all repeats of arbitrary length, see [35] for further details on
the algorithm.

All program-codes of the whole system are concatenated to a single long string with
special markers denoting the begin and end of each program. Instead of taking the original
instructions as letters of the alphabet (in the �rst case this would give 65K di�erent letters)
a coarse graining procedure is done before the pattern analysis: this coarse graining results
in 41 di�erent symbols per instruction in the �rst case and 24 di�erent symbols in the
much simpli�ed case. This coarse-graining re�ects the control-structure in the programs.
Constants or attachment sites are not considered speci�cally here.

The complexity measures are:

• AVERAGE is just the average length of patterns, average = 1
n

∑
patlen, found

having a minimal given frequency in the system of all program codes,

• NEGENTROPY tells something about the regularity of the found pattern lengths,
negentropy =

∑
patlen ∗ log(patlen). The term entropy here is not quite correct

because patlen is not between 0 and 1,

• TREEAREA is a normed area of all patterns found times the maximum length of a
single pattern, treearea = maxpatlen∗nrpat

seqlen , accounted in the whole system and

• EFFORT counts the number of processing steps needed in per element to �nd all
repeats in the system, effort = nroperations

seqlen .

2.6 Preliminary evolutionary results I
Typical simulation runs are done ten times and the average is plotted with error-bars
attached. To get an idea of the interaction consequences, always two runs per parameter
set are undertaken, one with attachment e�ectively switched o� and the other with normal
interactions. Initially all programs are preset with random instructions but a few (two
programs out of 16 possible in each container) seeded with the replicator programs shown
in the Appendix 6. In case of dynamical assembling two times 14 programs out of 256
available are seeded in each container. The registers and data-areas of the processor are
set to value null each.

2.6.1 Standard evolving programs
It was not expected to suddenly see unbounded growth of complexity. Indeed, with a low
mutation rate the system pretty quickly gets trapped in a trivial con�guration and is from
then on only optimizing robustness with even simpler systems emerging.

6

22000

22500

23000

23500

24000

24500

0 1000002000003000004000005000006000007000008000009000001e+06

co
m

pl
ex

ity
 [m

_e
nt

ro
py

]

generation analyzed

Complexity measure m_entropy in the sequence of generations

no neighbours
with neighbours

Figure 3: One million generations with all repeats occurring at least four times and the
NEGENTROPY-measure used.

Thus the change in measured complexity, see Figures 3 and 4 is mainly due to side-
reactions destroying randomness and creating program-codes with all instructions the same
value or very very simple patterns.

3 A second micro-controller � strongly simpli�ed
Analyzing the 130 instructions of the normal seed program reveals that large parts of
the code are spent by creating counters and tracking how many instructions already be
copied. This overhead in program complexity can � with only a negligible loss of generality
� be avoided when shifting the physics of the system towards string processing, see the
α-universe [8] already using it. With string processing not only counters can be avoided,
in addition, the whole arithmetic machinery is super�uous too � under an evolutionary
viewpoint arithmetic is very costly and brittle. The introduction of strings yield that each
string is stopped via a null-element (hex 0x0) and each memory access, being it data or
work-load, followed by an increment of the address.

In principle, even the Boolean logic processing capability is no longer needed because
the knowledge of an attached processor can also be signaled via one of the four �ags avail-
able. But removing the Boolean operators from the system makes universal computation
of these types of processors extremely di�cult (see the discussion on universality with the
game Life) and evolutionary intractable and thus e�ectively throwing out all higher level
computations possible. Only taking the minimum necessary Boolean logic of course (only
NOR or NAND) is feasible but doesn't change the picture too much. See Figure 5 for the
speci�cation of the such reduced micro-controller. Be aware, aside from the missing arith-
metic, the programming access and the dynamical assembling remains untouched. It can
be seen that now only three instructions are needed. The whole micro-controller shrunk
from 16-bit to 8-bit and thus all data and work-load areas also became 8-bit wide. Only
the EXEC-instruction need an additional byte to specify recognition sites and absolute
values being written into the registers. The number of special commands was halved and
the number of jump-bits could also be reduced because of the missing arithmetic. Ques-
tions like greater, or less-or-equal can no longer be posed, a carry �ag no longer is needed.

7

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0 1000002000003000004000005000006000007000008000009000001e+06

ef
fo

rt
ed

 n
ee

de
d

(n
or

m
ed

)
[]

generation analyzed

Relative effort in the sequence of generations

no neighbours
with neighbours

Figure 4: The same simulation as in Figure 3 but now with complexity measure EFFORT.
The slight increase in �nding all repeating patters stems from the increasing ambivalence
when analyzing sequence with many simple concatenated repeats.

Set accu

Set second

Set wildcard

SITE

XOR

OR

AND

CALL_WHILE

Attach work

CALL_IF

NOT

NOP

Release work

Clear accu

STOP

Return

0xc

0xd

0xe

0xf

0x8

0x9

0xa

0xb

0x4

0x5

0x6

0x7

special function

0x3

0x2

0x1

0x0

01234567

Exec

jump

spec

S

S

0

jump:

6 = jump PF2
7 = jump PF3

5 = jump PF1
4 = jump PF0

1 = jump ZF
2 = jump ELSE
3 = jump not ZF

0 = jump
extra registers

0 = FLAGS (PF0−3) [ro]
1 = Second operand [rw]
2 = Random [ro]
3 = Wildcard [rw]
4 = Port A [rw]
5 = Port B [rw]
6 = Port C [rw]
7 = Port D [rw]
8 = Port E [rw]
9 = Port F [rw]

11 = Port H [rw]
10 = Port G [rw]

12 = data address
13 = data byte
14 = work address
15 = work area byte

0 − 15 = Registers

Register banks

Store 0 A
reg. addr.

1

Load 1 A
reg. addr.

1

E

E

Figure 5: A much simpli�ed micro-controller
When bit A is set the data is stored in the second-register else in the accu. A bit set in the
wildcard-register means masking of the attachment-bit. The second byte of the EXEC-
instruction is used when the bit S is set and every null (0x0) means end of sequence.

8

34000

35000

36000

37000

38000

39000

40000

41000

42000

0 5000 100001500020000250003000035000400004500050000

co
m

pl
ex

ity
 [m

_e
nt

ro
py

]

generation analyzed

Complexity measure m_entropy in the sequence of generations

no neighbours
with neighbours

Figure 6: The NEGENTROPY with dynamical assembling the subroutines.

The Zero-�ag and the four special �ags are the only ones which can be used in conditional
expressions.

A further important aspect turns out with this type of encoding: all special commands
are now under the control of conditions. For example, the AND-operation can be done
when the Zero-�ag is set and other the accumulator is not changed. This conditionality of
all special commands can lead to very powerful programming and it would be of interest
in itself if evolution is able to utilize these features.

3.1 The self-assembled program evolving
Because of the considerable shorter program-length (the number of bits having to be sta-
bilized in an evolutionary context is now about a third compared to the micro-controller
in Figure 2) in the dynamical assembly case all time-spans are di�erent compared with the
standard case described in section 2.6. Because dynamical assembly is consuming quite
a lot of CPU-time the number of generations simulated is considerably less than before.
Nevertheless, some interesting aspects can be noticed. In Figure 6 the NEGENTROPY
measure even declines with a minimum number of four instances per repeat and time. This
behavior is reversed when a minimum of eight instances is required (data not shown). The
reason is that the pattern length in the system becomes more uniform due to the exploita-
tion via very short subroutines essential presetting other programs with simple values, very
often creating strings of maximum program length (in that case 128 instructions). This
uniformity is no longer so obvious when more instances per repeat are required.

Though not very pronounced, there is a slight increase in complexity concerning the
e�ort to �nd all repeating patterns, see Figure 7. This slight increase stems from the
increasing ambivalence of repeats of repeats when sequences become more homogeneous.
Looking at the other complexity measures AVERAGE and TREEAREA (data not shown)
one clearly can see that AVERAGE considerably increase whereby TREEAREA is declin-
ing, explaining that the number of long sequences with only one single instruction populate
the whole system.

9

0

0.01

0.02

0.03

0.04

0.05

0.06

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

ef
fo

rt
ed

 n
ee

de
d

(n
or

m
ed

)
[]

generation analyzed

Relative effort in the sequence of generations

no neighbours
with neighbours

Figure 7: The EFFORT measure when using dynamically assembly. The slight increase is
due to the increasing ambivalence when analyzing homogeneous sequences.

SITE

CALL_WHILE

CALL_IF

STOP

Store accu

Set accuXOR

NOT

AND

OR

Release work

Clear accu

Return

Attach work

Load accu

Load second0xc

0xd

0xe

0xf

0x8

0x9

0xa

0xb

0x4

0x5

0x6

0x7

special function

0x3

0x2

0x1

0x0

01234567

1 = jump ZF
2 = jump ELSE
3 = jump not ZF

0 = jump
JCO: extra registers

0 = FLAGS (PF0−3) [ro]
1 = Second operand [rw]
2 = Random [ro]
3 = Wildcard [rw]
4 = Port A [rw]
5 = Port B [rw]
6 = Port C [rw]
7 = Port D [rw]
8 = Port E [rw]
9 = Port F [rw]

11 = Port H [rw]
10 = Port G [rw]

12 = data address
13 = data byte
14 = work address
15 = work area byte

0 = jump PF0
1 = jump PF1
2 = jump PF2
3 = jump PF3

JPF:

EXE:
0 = begin

3 = end

1 = exec JCO
2 = exec JPF SPC:

0 = special SCO
1 = special SBO
2 = special SSI
3 = special SLS

BAN:
0 = register bank 0
1 = register bank 1
2 = register bank 2
3 = NA (see EXE)

0 − 15 = Registers

Register banks

EXE SPC

SxxJxx

[EXE][regis.]

[recognition−site]
[reg. constant]

[BAN]

L
oa

d−
st

or
e

SL
S

Si
te

 s
pe

ci
fi

c
SS

I

B
oo

le
an

 S
B

O
co

m
m

an
d

SC
O

Figure 8: Simplifying the micro-controller even further, in this case without loosing func-
tionality, abandons the concept of instructions altogether, only one instruction is left and
this one need no longer a special notation. Essentially, this micro-controller, though writ-
ten as an 8-bit type, is a two-bit type micro-controller. Of course, registers might be 8-bit
wide or of any other size, because register addressing is now also done via a string and
potentially as a dynamical assembled register.

10

3.2 An even more simpli�ed micro-controller
We can simplify the micro-controller even further, see Figure 8. Without loosing function-
ality instructions are abandoned altogether, only one instruction (EXEC) is left and it no
longer needs a special notation. Essentially, this micro-controller, though written as an
8-bit type, is a two-bit type micro-controller. Of course, registers might be 8-bit wide or
of any other size, because register addressing is now also done with a string. Additionally
the size of recognition sites can now be adjusted at will. The consequence of this machine
is that it becomes more and more reminiscent of an automaton and a Turing-machine.
Another feature appears: the special commands are no longer context-free. Depending in
which state the micro-controller just is, the meaning of these bits change. Thus di�erent
reading frames and all the other features known from viruses become meaningful now. Last
but not least, because of only two bits remaining the whole program-code can be written
easily in quarternary notation with probably optimal evolutionary traits, see Fontana [36].

4 Discussion
The key distinguished feature of dynamically self-assembling software is that there is a
canonical partition of structured programming: namely, put every block (think of Nassi
Shneiderman diagrams) into a di�erent processor and realize the jump to the correct entry-
point via an attachment procedure. This seemingly small shift in semantics has dramatic
consequences in the evolutionary system:

• The number of processors increases considerably, whereby the average single program
length decreases considerably.

• A main-program can no longer be sure that the subroutine it called is from its own
o�spring. It might even have a completely unknown functionality, but it can still
be a valid subroutine though the original one has been destroyed -> the systems
robustness increases.

• Most importantly: the big problem of needing long sequences of instructions being
copied before a new replicating program can been established is now reduced to
copying many but small programs. In view of considerable error-rates and side-
reactions this can be the way out o� this so far unsolved hen-and-egg problem.

• From a computer-science point of view the control-structure of a sequential program
is mapped onto a network of communicating processors each doing a much simpler
task than before � but, the overall complexity has not been reduced! Meaning that
the evolutionary task as such is NOT simpler, on the contrary, side reactions are
much more pronounced now.

• This framework allows a more or less continuous pathway from classical concepts of
von Neumann machines towards Holland's classi�er systems, the α-universe, func-
tional programming languages, Lindenmayer systems or even cellular automata.
These several entirely di�erent computing paradigms can now be viewed from a
common basis and be programmed by a structured assembler code.

• There is a semantic shift with context-dependent codons possible. This semantic
shift capability is structurally di�erent from questions on evolvability in genetic and
evolutionary algorithms.

• It also becomes clear that the question on evolvability in this context is an entirely
di�erent one compared to classical optimization studies in genetic or evolutionary
algorithms, see [37], because evolvability here means using semantic shifts as the
major source of new inventions. Nature is extremely brilliant in using these shifts.

11

5 Conclusions
The most fascinating aspect of this work to me is the common framework now established.
The vast majority of computing paradigms can now be looked at from a single viewpoint
and thus be questioned as to how they can contribute to questions of evolvability and mod-
eling of macromolecular dynamical regimes. The complexity of the micro-controllers used
can be changed from standard von Neumann type to string- or list-processing machines,
even to cellular automata or enhanced Turing-machines. It is easy to exchange them and
a common assembler-code interface allows for a quick testing of di�erent instruction sets.
Especially, when changing instructions to improve evolvability and/or to ease the mapping
of micro-controller instructions towards realization of these computations in systems with
real macromolecules, the biological consequences can be clearly seen and motivated.

Another central advantage of this self-assembly ansatz is the simplicity of the now linear
sub-routines. The mapping of the functionality of these code-patches onto real molecules
should now be much easier. In addition, the way of thinking towards attachment sites and
the then inherent parallelism leads to new insights and a more biological way of thinking.

One aspect which already turned out to be feasible is to bypass the criticism of [9], which
certainly applies to many other origin-of-life-models, by the experimental observations
made in [25] that side-reactions might be not only be harmless but even the cause of
evolutionary robustness, if they can be incorporated by the evolving system. Of course, it
can not be expected to design such a system by hand and the framework presented here
might o�er valuable help.

Acknowledgments This work is partly supported by the PACE-project EU-IST-FP6-
FET-002035. The idea to employ self-assembly arose in a discussion with J. S. McCaskill
following earlier work co-pioneered by T. Maeke and R. M. Füchslin [27], with whom
discussions were also appreciated. The fruitful discussions B. McMullin are appreciated
too.

6 Appendix

References
[1] M. Eigen. Selforganization of matter and the evolution of biological macromolecules.

58:465�523, 1971.

[2] L. E. Orgel. Molecular replication. 358:203�209, 1992.

[3] A. Lazcano and S. L. Miller. How long did it take for life to begin and evolve to
cyanobacteria. 39:546�554, 1994.

[4] J. von Neumann. Theory of Self-Reproducing Automata. Burks, A. W. University of
Illinois Press, Urbana, 1966.

[5] E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways for Your Mathematical
Plays. Academic Press, New York, 1982.

[6] J. H. Holland. Adaptation in Natural and Arti�cial Systems. University of Michigan
Press, Ann Arbor, 1975.

[7] J. H. Holland. A mathematical framework for studying learning in classi�er systems.
22:307�317, 1986.

[8] J. H. Holland. Studies of the spontaneous emergence of self-replicating systems using
cellular automata and formal grammars. In A. Lindenmayer and G. Rozenberg, ed-
itors, Automata, Languages, Development, pages 385�404. North Holland Publishing
Company, Amsterdam, 1976.

12

... declarations here ...
 site_a ; Declare this program to belong to site A
 out 0x0 enable ; Tell the environment that we are able to copy
 st 0x0 address_high ; where the length of the code in
 ; the daughter is stored.
 st 0x0 work_addr_high ; Reset the address in accessing work area
 ld flags
 and work_avail ; We mask out the other flags
 if == 0 ; With a working area available continue
 attach s_b ; Search for a program which contains
 ; SITE_B as splicing site
 endif

 st 0x0 work_addr_low ; Reset the address in accessing work area

 st anz_ele_addr address_low ; Write 0 into register address
 ld dau_low_byte
 if == 0 ; If zero then the daugher area is free
 ; and we can start copying the other
 ; working area part into the daughter
 st neigh_n0_addr address_low
 st work_area_low_byte dau_low_byte ; Remember to others ID
 st work_area_high_byte dau_high_byte

 st anz_ele_addr address_low ; Write 0 into register address
 st 0xc0 dau_low_byte ; Write the number of bytes to be copied
 st 0x0 dau_high_byte

 call cp_work_to_dau ; Copy working area into daughter
 release ; Release the working copy
 at_unspec ; Search for another program in which the
 ; copied daughter can be copied.

 else ; We do have bytes in the daughter
 st 0x0 known_neigh
 st neigh_n0_addr address_low
 ld dau_low_byte
 sub work_area_low_byte
 if == 0
 ld dau_high_byte
 sub work_area_high_byte
 if == 0
 st 0x1 known_neigh
 endif
 endif

 ld known_neigh
 if == 0 ; The copied daughter program is not from
 ; the current neighbour, thus we might
 ; copy now.
 call cp_dau_to_work ; Copy daughter into the working area

 st anz_ele_addr address_low ; Write register address
 st 0x0 dau_low_byte ; Reset the counter
 release ; Release the working copy
 endif
 st anz_ele_addr address_low ; Write register address and
 st 0x0 address_high ; Also reset the upper byte
 st 0x0 dau_low_byte ; and reset counter for new run

 endif
halt

Figure 9: A simple enzyme like replication assembler program executed by the micro-
controller in Figure 2.

; Hardwareevolution with MERLE (evocpu_d_psm)
;
; A simple replicating program. General idea is to copy
; the code of a neighboring program into the daughter
; memory and to wait until another neighboring program is
; available, in which then the stored code is copied.
; Program and data is interpreted as string with auto−increment
; of addresses.
;−−
; Subroutines in this file:
;−−
;
;−−
; INI_REG
;
;
;
;
; IN: Non
; OUT: several registers
;
;−−

; A site 0x0 would yield a premature stop of copying process!
def s_a 0x2 ; Identifier for splicing site A
def s_b 0x4 ; Identifier for splicing site B

def work_avail 0x1 ; Flag is set if a working area is available

reg flags 0x10
reg second 0x11
reg random 0x12
reg wildcard 0x13
reg port_a 0x14
reg port_b 0x15
reg port_c 0x16
reg port_d 0x17
reg port_e 0x18
reg port_f 0x19
reg port_g 0x1a
reg port_h 0x1b
reg address_low 0x1c
reg dau_low_byte 0x1d
reg work_addr_low 0x1e
reg work_area_low_byte 0x1f

;−−
;
;−−
; MAIN
;
;−−
 site s_a ; Declare this program to belong to site A
 ld flags
 and work_avail ; We mask out the other flags
 call_if == 0 attach_dau ; With a working area available continue

 cla
 st address_low ; Write 0 into register address
 ld dau_low_byte

 ; If zero then the daugher area is free
 ; and we can start copying the other
 ; working area part into the daughter
 call_if == 0 fill_data_area copy_data_area
halt

;−−
; If working area is empty fill it now.
;−−
func fill_data_area
 ; If zero then the daugher area is free
 ; and we can start copying the other
 ; working area part into the daughter

 cla
 st address_low ; Write 0 into register address
 st work_addr_low ; Reset the address in accessing work area
 ld 1
 call_while != 0 work_to_dau_loop ; As long as there are lines copy
 release ; Release the working copy
 at_unspec ; Search for another program in which the
 ; copied daughter can be copied.

return ; fill_data_area is finished!!

;−−
; Copy program from work to data area
; The number of elements to be copied is stored at
; the daughter address 0. The copy region starts
; at the address daughter_start (must be below 256)
;−−
func work_to_dau_loop
 ld work_area_low_byte
 st dau_low_byte ; Copy lower byte

return ; work_to_dau_loop is finished!!

;−−
; Copy data area into working area
;−−
func copy_data_area
 cla
 st address_low ; Write 0 into register address
 st work_addr_low ; Reset the address in accessing work area
 ld 1
 call_while != 0 dau_to_work_loop ; copy lines
 cla
 st address_low ; Write 0 into register address
 st dau_low_byte ; Reset the daughter again
 release ; Release the working copy
 call attach_dau ; Attach the next neighbour
return ; copy_data_area is finished!!

;−−
; Attach another program
;−−
func attach_dau
 attach s_b ; Search for a program which contains
 ; SITE_B as splicing site
return ; attach_dau is finished!!

;−−
; Copy program from daughter to work
; The number of elements to be copied is stored at
; the daughter address 0. The copy region starts
; at the address daughter_start (must be below 256)
;−−
func dau_to_work_loop
 ld dau_low_byte ; Load lower byte
 st work_area_low_byte ; Copy lower byte
return ; dau_to_work_loop is finished!!

Figure 10: The dynamical assembled program of the micro-controller in Figure 5

13

[9] B. McMullin. The holland α-universes revisited. pages 317�326. "", 1992.

[10] A. K. Dewdney. Computer-kurzweil. 10:8�11, 1988.

[11] S. Rasmussen, C. Knudsen, R. Feldberg, and M. Hinsholm. The coreworld: Emergence
and evolution of cooperative structures in a computational chemistry. 42:111�134,
1990.

[12] T. S. Ray. An approach to the synthesis of life. In C. G. Langton, C. Taylor, J. D.
Farmer, and S. Rasmussen, editors, Arti�cial Life II, pages 371�408. Addison-Wesley,
New York, 1991.

[13] R. K. Standish. Open-ended arti�cial evolution. 3:167, 2003.

[14] S. Spiegelman, I. Haruna, I. B. Holland, G. Beaudreau, and D. R. Mills. 54:919, 1965.

[15] C. K. Biebricher, M. Eigen, and W. C. Gardiner. Quantitative analysis of selection
and mutation in self-replicating rna. pages 317�337, 1991.

[16] C. K. Biebricher, M. Eigen, and J. S. McCaskill. Template-directed and template-free
rna synthesis by qβ replicase. 231:175�179, 1993.

[17] J. S. McCaskill. Polymer Chemistry on Tape: A Computational Model for Emergent
Genetics. Max�Planck�Society, Göttingen, Germany, 1988.

[18] W. Fontana. Algorithmic chemistry: A model for functional self-organization. In
C. G. Langton, editor, Arti�cial Life II, pages 159�202. Addison-Wesley, Reading,
Massachusetts, 1991.

[19] P. Dittrich, J. Ziegler, and W. Banzhaf. Arti�cial chemistries - a review. 7:225�275,
2001.

[20] U. Tangen. The Extension of the Quasi-Species to Functional Evolution. PhD Thesis,
Jena, 1994.

[21] S. Altmeyer and J. S. McCaskill. Error threshold for spatially resolved evolution in
the quasispecies model. 86:5819�5822, 2001.

[22] J. S. McCaskill, S. Altmeyer, and R. M. Füchslin. The stochastic evolution of catalysts
in spatially resolved molecular systems. 382:1343�1363, 2001.

[23] J. Yin and J. S. McCaskill. Replication of viruses in a growing plaque: A reaction-
di�usion model. 61:1540�1549, 1992.

[24] G. J. Bauer, J. S. McCaskill, and H. Otten. Traveling waves of in vitro evolving RNA.
86:7937�7941, 1989.

[25] R. Ehricht, T. Ellinger, and J. S. McCaskill. Cooperative ampli�cation of templates
by cross-hybridisation (CATCH). 243:356�364, 1997.

[26] B. Wlotzka and J. S. McCaskill. A molecular predator and its prey: Coupled isother-
mal ampli�cation of nucleic acids. 4:25�33, 1997.

[27] R. Füchslin, T. Maeke, U. Tangen, and J. S. McCaskill. Evolving inductive general-
ization via genetic self-assembly. Adv. in Compl. Systems, 2005.

[28] S. Rassmussen, L. Chen, M. Nilsson, and S. Abe. Bridging nonliving and living matter.
9:269�316, 2004.

[29] J. S. McCaskill, T. Maeke, U. Gemm, L. Schulte, and U. Tangen. NGEN a massively
parallel recon�gurable computer for biological simulation: towards a self-organizing
computer. 1259:260�276, 1997.

14

[30] U. Tangen, L. Schulte, and J. S. McCaskill. A parallel hardware evolvable computer
POLYP: Extended abstract. Proceedings of the FCCM'97 in IEEE Symposium, 1:238�
239, 1997.

[31] U. Tangen and J. S. McCaskill. Hardware evolution with a massively parallel dynami-
cally recon�gurable computer: POLYP. In M. Sipper, D. Mange, and A. Pérez-Uribe,
editors, ICES '98 Evolvable Systems: From Biology to Hardware, volume 1478, pages
364�371. Springer, Heidelberg, 1998.

[32] U. Tangen. Self-organisation in micro-con�gurable hardware. In M. Bedau, J. S.
McCaskill, N. H. Packard, and S. Rasmussen, editors, Arti�cial Life VII, pages 31�38.
The MIT Press, Cambridge, Massachusetts, 2000.

[33] K. Chapman. Dynamic microcontroller in an XC4000 FPGA. Xilinx Application Note,
1994.

[34] U. Tangen, T. Maeke, and J. S. McCaskill. Advanced simulation in the con�gurable
massively parallel hardware MereGen. In K. H. Ho�mann, editor, Caesarium 2000,
LNCS, pages 107�118. Springer, 2001.

[35] H. D. Lohrer and U. Tangen. Investigation into the molecular e�ects of single nu-
cleotide polymorphism. Pathobiology, 68:283�290, 2001.

[36] W. Fontana, D. A. M. Konings, P. F. Stadler, and P. Schuster. Statistics of rna
secondary structures. 33:1389�1404, 1993.

[37] H. Suzuki. Evolvability analysis: Distribution of hyperblobs in a variable-length pro-
tein genotype space. In M. A. Bedau, J. S. McCaskill, N. H. Packard, and S. Ras-
mussen, editors, Alife 7, pages 206�220. MIT Academic Press, Cambridge, Mas-
sachusetts, 2000.

15

