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Abstract

We study the influence of stochastic effects due to finite population size in the evolutionary
dynamics of populations interacting in the multi-person Prisoner’s Dilemma game. This paper
is an extension of the investigation presented in a recent paper [Eriksson and Lindgren (2005),
J. Theor. Biol. 232(3), 399]. One of the main results of the previous study is that there
are modes of dynamic behaviour, such as limit cycles and fixedpoints, that are maintained
due to a non-zero mutation level, resulting in a significantly higher level of cooperation than
was reported in earlier studies. In the present study, we investigate two mechanisms in the
evolutionary dynamics for finite populations: (i) a stochastic model of the mutation process,
and (ii) a stochastic model of the selection process. The most evident effect comes from the
second extension, where we find that a previously stable limit cycle is replaced by a trajectory
that to a large extent is close to a fixed point that is stable inthe deterministic model. The
effect is strong even when population size is as large as104. The effect of the first mechanism
is less pronounced, and an argument for this difference is given.

1 Introduction

When several individuals interact in a group to produce a good or to receive a benefit, the best
strategy for a player depends on the details of the game as well as on the strategies of the others.
For the group as a whole, and often for each individual in the long-term perspective, it would
be best if cooperation could be established. In social and natural systems, there are, though,
numerous examples of situations where so-called free riders or defectors take advantage of others
cooperating for a common good [1–3]. A game-theoretic approach for the study of cooperation
can be based on the Prisoner’s Dilemma game [4, 5] – a situation that captures the temptation to
act in a selfish way to gain a higher own reward instead of sharing a reward by cooperating. In the
game, the players independently choose an action, either todefect or to cooperate.

In the two-person game, the scores areR (reward) for mutual cooperation,T (temptation
score) for defection against a cooperator,S (sucker’s payoff) for cooperation against a defector,
andP (punishment) for mutual defection, with the inequalitiesS < P < R < T and (usually)
R > (T + S)/2. We use fixed values onR andS in this study,R = 1 andS = 0, while 0 < P <
1 < T < 2; in the population dynamics we use there are only three independent parameters, the
third one being a growth constant. From theoretic and simulation studies of two-person Prisoner’s
Dilemma game, it is known under which circumstances repeated interactions may allow for a
cooperative population to be established that can resist invasion by non-cooperative mutants (see,
e.g., [5–11]).

In then-person Prisoner’s Dilemma game,n players simultaneously choose whether to coop-
erate or to defect. In the literature, there are several evolutionary models based on then-person
Prisoner’s Dilemma using various strategy sets and pairingmechanisms, e.g., where the players are
distributed in space (see, e.g., [12–19]). In a recent paper[20], we revisited the classicn-person
Prisoner’s Dilemma. Following Boyd and Richersson [21] andMolander [22], the behaviours of
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the participants were modelled by simple reactive strategies. These authors analyse the stability of
stationary populations in the limit where mutations are infrequent: a mutation either is driven to
extinction by the selective pressure from the resident population, or leads to a new resident pop-
ulation. The general conclusion from their studies is that cooperation is difficult to obtain when
extending the group size beyond the two persons in the original Prisoner’s Dilemma game. In this
limit, we have found [20] that for some values of the payoff parameters, the rate of convergence to
the evolutionarily stable populations is so low that the assumption that mutations in the population
are infrequent on that time scale is unreasonable. Furthermore, the problem is compounded as the
group size is increased. In order to address this issue, we derived a deterministic approximation of
the evolutionary dynamics with explicit, stochastic mutation processes, valid when the population
size is large.

The question is: does the deterministic replicator dynamics introduced in [20] accurately de-
scribe the time evolution of the frequencies of strategies in a finite population? In the present
study, we investigate two mechanisms in the evolutionary dynamics for finite populations: (i) a
stochastic model of the mutation process, and (ii) a stochastic model of the selection process.

2 Then-person Prisoner’s Dilemma game

In then-person Prisoner’s Dilemma game each player interacts withn− 1 other players. Depend-
ing on the numberk of others cooperating, a player receives the scoreV(C|k) when cooperating
and the higher scoreV(D|k) when defecting. In order for the model to be well-behaved, the score
functions must obey two constraints: first, the scores must increase with an increasing number
of cooperators. Second, the sum of the scores given to all players should increase if one player
switches from defection to cooperation (see, e.g., [21]). In this paper we shall assume that the
scoresV can be calculated as a linear combination of the scores against the other players inn− 1
ordinary two-player Prisoner’s Dilemma games:

V(C|k) =
k

n − 1
andV(D|k) = T

k

n − 1
+ P

n − k − 1

n − 1
, (1)

where we have divided byn− 1 in order to make it easier to compare results from different group
sizes. The parametersP andT obey0 < P < 1 < T < 2. Note that this is still ann-person
game since the same action is performed simultaneously in all games. It is straight-forward to
extend this model to arbitrary score functionsV(C|k) andV(D|k) (provided the above constraints
are fulfilled). The qualitative conclusions of this paper, however, are not expected to depend on
the choice of score functions.

We focus on the set of trigger strategies [23] as the strategyspace for the evolution, which was
also considered by, e.g., Boyd and Richersson [21] and Molander [22]. Despite their simplicity,
trigger strategies capture many important aspects of the many-person game, and allow for straight-
forward evaluation of the expected score for a player in a group randomly generated from a given
population. A trigger strategysk is characterised by the degree of cooperation that it requires
in order to continue to cooperate: a player with trigger strategy sk cooperates if at leastk other
players cooperate. In a game withn participants,k is in the range0, . . . , n. The strategys0

is an unconditional cooperator andsn is an unconditional defector. Each player decides whether
to cooperate or to defect based on the actions of the other players. In the first round after the
formation of a group, all players are assumed to cooperate, with the exception of unconditional
defectors. Then the players that are unhappy with the numberof cooperators switch to defection.
This may cause other players to change their action, and thisis iterated until a stable configuration
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has been reached. Note that the number of cooperators may only decrease or be stable, and that
this procedure converges to the stable configuration with the maximum number of cooperators. In
a repeated game without noise, this implies that a group of players with different trigger levels
reaches a certain degree of cooperation, some players may besatisfied and cooperate while the
others defect. We use the scores for the players in this equilibrium state to determine the selection,
described in the next section.

3 Evolutionary dynamics

Consider a population ofN individuals. From one generation to the next, a fractionδ of the
population is replaced using fitness proportional selection, where the fitness of an individual is
proportional to the number of offspring surviving to reproductive age. Throughout this paper,
δ = 0.1. If small enough, the value ofδ does not influence the structure of the evolving population,
but determines the evolutionary time scale. Assuming that the population size is large and constant,
the evolutionary dynamics takes the form of

x′
l = xl + δ

(

fl

f̄
− 1

)

xl , (2)

wherexl is the fraction of players in the population with trigger level l, x′
l is the value ofxl in the

next generation,fl is the expected fitness for a player with trigger levell, andf̄ =
∑n

l=0 xlfl is
the average fitness in the population. The expected fitnessfl for a player with trigger levell is the
expected score of the player in a randomly formed group:

fl =

n
∑

i1, ..., in−1= 0

xi1 · · · xin−1 S(l, i1, . . . , in−1) (3)

whereS(l, i1, . . . , in−1) is the score of a player with strategysl in a game withn−1 other players,
using strategiessi1, . . . , sin−1 respectively.

Molander [22] has analysed this model – with general score functionsV(C|k) andV(D|k) –
under the assumption that a mutation will either lead to a newresident population, or that the
evolutionary dynamics (2) will bring the population back tothe original population before the
next mutation occurs. Molander has shown that in each interval P ∈ ( k−1

n−1 , k
n−1), wherek ∈

{1, . . . , n − 2}, there is either a mixture of strategiessk andsn, which is evolutionarily stable, or
there is a mixture of strategiess0, . . . , sn−1 (all cooperating), that resists invasion by strategysn,
but which is not evolutionarily stable. Finally, there is noother asymptotically stable population
in that interval. In the intervalP ∈ (n−2

n−1 , 1), the purely cooperative equilibrium mixture is the
only possible asymptotically stable population.

Consider a population with groups of sizen consists of a mixture of strategiessk andsn, in
fractionsx and1 − x, respectively. Since, in this population, strategysk cooperates if and only if
there are at leastk other players with the same strategy in the group, and since strategysn always
defects, direct evaluation of (3) gives

fk(x) =

k
∑

i=1

P

(

n − 1

i − 1

)

xi−1(1 − x)n−i +

n
∑

i=k+1

i − 1

n − 1

(

n − 1

i − 1

)

xi−1(1 − x)n−i (4)
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Figure 1: The payoff at equilibrium as a function ofP (thick line), for T = 1.2 and group size
n ∈ {2, . . . , 10}. Also shown is the payoffP (dashed line) for a population of pure all-defect.
(Adapted from [20].)

for strategysk and

fn(x) =
k

∑

i=0

P

(

n − 1

i

)

xi(1 − x)n−i−1 +

+
n−1
∑

i=k+1

[

P + (T − P )
i

n − 1

](

n − 1

i

)

xi(1 − x)n−i−1, (5)

for strategysn. We find the equilibrium by settingfk(x) = fn(x) and then solving numerically for
x, with the requirement0 < x < 1. Existence and uniqueness of this equilibrium is guaranteed
by the result of Molander [22]. In Fig. 1 we show how the equilibrium fitness depends onP
for T = 1.2, for group sizen ∈ {2, . . . , 10}. The fitness at the asymptotically stable population
approachesf = P asn increases, indicating a decreasing degree of cooperation with increasingn.
From the existence and uniqueness of the asymptotically stable populations of this form, and from
a Taylor expansion offk andfn to thek + 1th order, follows thatxk ∝ 1/n at the asymptotically
stable population, forT > 1. The decrease in cooperation in the evolutionarily stable populations
is what has led earlier authors [21, 22] to conclude that cooperation in large or event modestly
sized groups is evolutionarily unfavoured.

The number of terms in direct evaluation of the expected fitness from (3) grows very rapidly
with n. Hence, in order to simulate the evolutionary dynamics (2) for general population com-
positions, it is necessary to have an efficient method for evaluating the expected fitness of each
strategy. Using the probabilityP l

i that the number of cooperating players equalsi, in a group with
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one player using strategysl and then− 1 other players chosen randomly from the population, we
may express the expected fitnessfl as

fl =

l
∑

i=0

P l
i V(D|i) +

n
∑

i=l+1

P l
i V(C|i − 1), (6)

since strategysl cooperates ifi > l. Thus, efficient calculation of theP l
i allows for the study of

the evolutionary dynamics in groups of more than a few players. SinceP l
i only depends on the

distribution of trigger levels in the population, this method may be applied for any payoff functions
V(C|i) andV(D|i). In the previous paper [20] we derived the following formulafor P l

i :

P l
i =



















0 wheneveri = l,

Dl,0
n−1 wheni = 0,

(x0 + . . . + xn−1)
n−1 wheni = n,

(

n−1
i−1(l<i)

)

(x0 + . . . + xi−1)
i−1(l<i) Dl,i

n−1−i+1(l < i)
otherwise,

(7)

where1(l < i) is one ifl < i and zero otherwise, andDl,i
m is given by the recursive formula

Dl,i
m =











xm
n wheni = n − 1

M
∑

j=0

(

m
j

)

xj
i+1 Dl,i+1

m−j otherwise
(8)

whereM = m + i + 2 − 1(l < i) − n. Note that wheneverl < i andl′ < i, P l
i = P l′

i , so if l < i

thenP l
i = P 0

i . Using tables to store evaluated values ofDl,i
m , it is possible to evaluate the values

of P l
i for all l andi in ∼ n4 operations.

4 Selection and mutation processes in finite populations

In [20] we introduced a simple model for incorporating mutations as an explicit part of the evolu-
tionary dynamics. The population is subject to selection asin (2). In addition, a numberMl→j of
individuals per generation switch from strategysl to strategysj due to mutations. The mutations
are assumed to be generated by uncorrelated stochastic events, e.g. by a Poisson process, in the
process of reproduction. The evolutionary dynamics then takes the form

x′
i = xi + δ

(

fi

f̄
− 1

)

xi +
1

N

n
∑

j=0

(Mj→i −Mi→j). (9)

In a single generation, each player with strategysi has an expected numberδfixi/f̄ of offspring
surviving to reproductive age. Mutations occur independently in the creation of each offspring,
with a probability ofµ ≪ 1 per offspring per generation, and the strategy of the mutated offspring
is chosen randomly among then + 1 strategies, with equal probability. Since the population
size is assumed to be large, we approximate the numberMi→j of mutated offspring with its
expected value,Mi→j ≈ µδNfixi/[(n + 1)f̄ ]. Inserting this approximation into (9), we obtain
the following expression for the evolutionary dynamics:

x′
i = xi + δ

(

fi

f̄
− 1

)

xi + δ µ

(

1

n + 1
−

fi

f̄
xi

)

. (10)
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Figure 2: a The time-averaged average payoff in the population as a function of P , for n = 6,
T = 1.6, andµ = 10−4. Also shown is the payoff in the limit of infinitesimalµ (thick line) and
the payoffP for a population of pure all-defect (dashed line). (Adaptedfrom [20].) b The initial
transient and two cycles of the attractor of the time evolution of the population forP = 0.33
(Adapted from [20]). Within a cycle, strategys6 comes to dominate the population for a period
of time. During the part of the cycle where strategys6 is prominent, the system approaches the
population mixture which is evolutionarily stable when mutations are infrequent. For the value of
P used here, it corresponds to a mixture of strategiess2 ands6. For a period of time, this mixture
of strategies dominates the population. After a while, however,x5 starts to grow at the expense of
x6, and after a while there is another sharp transition wherex5 andx2 grow andx6 decay to very
low levels.

For some values of the payoff parameters, the strength of selection is so small compared to the flow
mutants that the population does not converge to the evolutionary stable composition of strategies
in the population. This is illustrated in Fig. 2a, where we show the asymptotic time-averaged
average fitness in the population, for case of infrequent mutations [22] and for (10). For some
values ofP the difference is clear; in this case, the dynamics either converge to a limit cycle
(illustrated in Fig. 2b), or to a fixed point where three or more strategies coexist at significant
levels.

In this article, we compare the results of the deterministicapproximation (10) to explicit sim-
ulation of (9). It is natural to assume that in the stochasticmodel, the mutations in individuals
with strategysi occur according to a Poisson process with rateλi = µδNfixi/[(n + 1)f̄ ]. In
each simulation step, the number of mutants of each strategyis drawn independently. For each
mutation, the resulting strategy is drawn with uniform distribution and the fraction of the chosen
strategy is incremented.

An additional source of stochastic fluctuations come from the selection of individuals from
one generation to the next. The growth of the fractionxi of strategysi in (2) may be viewed as
a mean-field approximation of a more realistic stochastic growth process, in which the difference
in fitness between two individuals is reflected in the probability distribution of their number of
offspring. For simplicity, we model mutations as occurringseparate from the selection process
– in our computer simulations, we first generate the next generation according to the selection
model, and then impose the effect of mutations as described above.

The selection process is as follows: in each generation, an individual with strategys produces
a number of offspring in relation to the fitness of strategys. It is assumed that the total number of
offspring is more than enough to replace the parent generation. The fraction of the offspring with
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strategysi is then

(1 − δ)xi + δ
fi

f̄
xi, (11)

which we recognize as the fraction ofsi in the next generation in the case of an infinite population
size. Since the environment has a finite carrying capacity, we sampleN individuals uniformly
from the offspring of the parent generation. Hence, the joint distribution of the numberki of
players with strategysi in the next generation is multinomial:

f(k0, . . . , kn) =
N !

∏n
i=0 ki!

n
∏

i=0

[

(1 − δ)xi + δ
fi

f̄
xi

]ki

, (12)

provided the constraint
∑n

i=0 ki = N is fulfilled. In the limit of N → ∞, the variance of
x′

i = ki/N vanishes, and the dynamics becomes deterministic, as expected.
The selection process can be approximated, for large populations, with a diffusion process: to

each fractionxi we add a normal distributed numberξi with zero mean and a varianceδxi(1 −
xi)/N . We take the variablesξi andξj to be uncorrelated, for alli 6= j. If a fractionxi becomes
negative, it is set to zero. Finally, the fractions are normalised so that

∑n
i=0 xi = 1. This approx-

imation does not exhibit the correct correlations in the fluctuations of thexi, but the magnitude
of the fluctuations are approximately correct. Since the magnitude of the perturbations are small,
however, correlations and higher-order cross-terms may beneglected.

5 Results

In Fig. 3 we illustrate the effect of random mutations and thefinite population size on the evolution
of the frequencies of the strategies, for a specific choice ofthe parameters. The effect is similar for
other parameters; for parameter values where the deterministic approximation (10) converges to a
fixed point (c.f. Fig. 2a), introducing a finite (large) population size does not change the qualitative
properties of the long-term evolutionary dynamics, although the variance of the fraction of each
strategy is increasing with decreasing population size.

We now focus on the fate of the limit cycles that are the most striking feature in the deviations
of (10) from the evolutionary dynamics in the limit of infinitesimal mutation rate. The simulations
show that, in the limit of very large populations, the analytical approximation (10) of how the flow
of mutants alter the replicator dynamics is valid. As can be see from the smoothness of the curves
in Fig. 3a, the main effect of the stochastic mutations compared to their deterministic counterpart
is to add a little noise to the time evolution so that the curvefluctuates around the deterministic
solution. Hence, unless the population size is small, the difference between the explicit mutations
and the analytical approximation is negligible.

Fluctuations in the frequencies of strategies in the population due to random sampling in the
selection play a very different role. Panels b–d in Fig. 3 illustrate the effect of these fluctuations
for three values of the populations size. For very large populations (N ∼ 108), the fluctuations
do not alter the qualitative properties of the time evolution (panel b). However, for populations as
large asN = 106 individuals (panel c), we find that the fluctuations cause significant deviations
from the deterministic model, while some qualitative aspects are the same: the time evolution
still exhibit cycles, characterised by short periods wherethe composition is similar to that of the
infrequent-mutation solution of Molander [22], interspersed with long periods of a high degree of
cooperation and with a slow drift of strategies. The period of these cycles now fluctuate. When

7



0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
F

ra
ct

io
nx

i
a

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1b

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

nx
i

µt

c

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

µt

d

Figure 3: Illustration of the effect of stochastic mutations and a finite population size on the
evolution of strategies. The parameters are:T = 1.6, P = 0.33, µ = 10−4 and the groups size
n = 6. The lines are:s0 (blue), s1 (green),s2 (red), s3 (cyan),s4 (magenta),s5 (yellow), and
s6 (black). In panela we show the time evolution of a population with stochastic mutations but
ignoring the effect of finite population size in the selection (population sizeN = 104). In panels
b, c, andd, both explicit mutation and selection is present. The effective population sizeN takes
the value108, 106, and104, respectively.

the population size is decreased toN = 104, the cycles are no longer stable. The population now
switches between irregular cyclic behaviour and more stable configurations in which three or more
strategies co-exist. Preliminary investigations indicate that these configuration may have a stable
counterpart in the deterministic approximation; it is not yet clear, however, if this he case for all
parameter values.

6 Discussion and conclusions

The main purpose of this article (and also of the previous article [20]) is to better understand how
more realistic models of the evolution of a population affects the evolution of the frequencies of
strategies in the population. In the present article we haveconfirmed that – when the population
size is large and the mutation rate is small – the deterministic approximation (10) provides an
accurate description of the evolutionary dynamics. We havealso shown that taking the fluctuations
in the selection process into account may lead to different compositions of the strategies in the
population than expected from the earlier analysis.

The fluctuations in the selection of individuals show a much stronger effect on the evolutionary
dynamics than does the fluctuations from the mutation process. A large part of this difference can
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be understood from the magnitudes of these fluctuations, as characterized by their variances: in the
mutation process, the variance contributed per time step isof order[δµxi/(n + 1)]N−1, whereas
in the selection process the variance isδxi(1−xi)N

−1. When the mutation rate is small, andxi is
not very close to one,µ/(n+1) ≪ 1−xi. For instance, whenµ = 10−4, N = 104, andn = 6, as
in Fig. 3a, the typical fluctuations due to mutations are of the same order as the fluctuations from
the selection process in population withN ∼ 108 individuals. This explains the good qualitative
agreement between panels a and b in Fig. 3.

It remains to explain what causes the evolutionary dynamicsto switch from the limit cycle to
coexistence of three strategies in Fig. 3d. A hypothesis is that, apart from the limit cycle, there
are stable fixed points with a small basin of attraction when the population evolves under (10);
the fluctuations in the selection process may then cause a transition from one mode to the other
and back. In this case we expect that the transitions betweenthese modes occur, approximately,
according to a Poisson process. The number of such fixed points, and to which extent the proposed
mechanism can explain the observed dynamics, remains to be investigated.
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