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Abstract

Social and semantic networks have mostly been studied separately. We provide a theoreti-
cal framework to bind these two networks, suggesting that the analysis of knowledge community
structure and underlying agent-based dynamics requires to take into account the reciprocal in-
fluence of both networks. We show how to characterize meaningful cultural communities using
Galois lattices and briefly explain how models could render the coevolution of socio-semantic net-
works, building upon a generalized understanding of preferential attachment. This should enable
the comprehension of stylized facts proper to knowledge networks, in particular how social and
semantic structures jointly affect each other.

Keywords:social complex systems, network dynamics, Galois lattice or concept lattice, ap-
plied epistemology, community representation, knowledge diffusion, social cognition.

Introduction

Much attention has recently been given to real-world networks, considering them as complex systems
in order to explain their formation and dynamics [1, 36]. Models have been developed that provide
compelling insight and understanding of the topological properties of these networks, including in
particular node degrees and the broadly sharedscale-freeproperty [2, 53] as well as, to cite a few,
mean distance (shortest path length), largest connex component size (giant component), assortative
mixing, existence of cycles, number of second neighbors, and one-mode community structure [9, 10,
19, 34, 38, 54].

In general social networks have rarely been treated in a different way than other real networks,
while they exhibit particular features regarding for instance correlations in degrees of adjacent vertices
[35] or clustering structure [55] (namely, the propensity of two agents to be connected together if they
have common acquaintances). Often, agents are considered to behave in a way not more complex than
molecules; even when taking into account the the behavioral complexity of agents, social network
models do not seem to focus on the relationships between semantic and social features. Yet in order,
for instance, to model the way beliefs propagate among social networks of agents, that is, explain how
the social network structure affects concept propagation and in return how concept propagation affects
the social network, one must be able to give an account of how knowledge networks form and evolve.
Here, we need to consider arguments stemming from social psychology: attraction for same-profile
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people (“homophily”) is key in the formation of social acquaintances [31], hence full attention should
be given to the influence and evolution of semantic features.

We introduce here a network dual to the social network, the network of semantic items, denoted
as concepts. We will focus on the study of communities of scientists, which has been made a realistic
objective through the massive availability of electronic and free data. Apart from properties relative to
the social network (such as node degrees) we can assume that one of the dominant criteria for choosing
a scientific partner mostly depends on the cultural similarity of two agents. Some economic models
of knowledge creation already take agent profiles into consideration, as elements of a vector space,
to explain the structure of the economic network — in [12], agents match two by two to produce
new knowledge according to their profile. Our goal is to bring a formal framework for studying the
intertwining of social and semantic networks, both theoretically and empirically, as well as to point
out stylized facts that would explain their reciprocal influence and the emergence of “cultural cliques”
of agents. Since understanding knowledge network structure is a key step in this process, we first show
how communities should be appraised when binding social and semantic networks. We consequently
present some implications on how network dynamics should be considered and modeled. At the
same time, we sketch out and describe a few potential empirical applications. In a broader view, this
framework constitutes a step towards actually implementing the paradigm of cultural epidemiology
[13, 50], therefore enabling us to proceed further with the study of knowledge diffusion.

1 Networks

In this section we present the social and semantic networks and links between and within them. We
exemplify these structures by a socio-semantic complex system of scientists collaborating to produce
articles.

Definition 1 (Social network). The social networkS is represented by the network of coauthorship,
where nodes are authors and links are collaborations. ThusS = (S, λS), whereS denotes the set of
authors andλS denotes the set of undirected links.

As time evolves, new articles are published, new nodes are possibly added toS and new links are
classically created between each pair of co-authors [33]. We actually consider the temporal series of
networksS(t) with t ∈ N (articles are published with a date, thus an integer) to observe the dynamics
of the network (in the remainder of the paper we omit the reference tot, S depending implicitly on
time). Depending on model goals and desired precision, we may want to take into account the fact
that, for instance, two nodes have co-authored more than one paper (thus introducinglink strength),
or that their collaborations are more or less recent (thus introducinglink age[22, 41]). Relationships
should consequently be different according to whether agents have collaborated only once and a long
time ago, or they have recently co-authored many articles. An easy and practical way for dealing
with these notions is to use a weighted network. In anon-weighted network, we say that two nodes
are linked as soon as there exists one coauthored article. Links can only be activeor inactive. In
a weighted network, links are provided with a weightw ∈ R+, possibly evolving in time. We can
therefore easily represent multiple collaborations by increasing the weight of a link, or render the age
of a relationship by decreasing this weight (for instance by applying an aging function). This method
enables us to model a non-weighted network, by assigning weights of1 or 0 respectively to active or
inactive links, while leaving room for theex postcreation of a non-weighted network from a weighted
network, by setting a threshold such that a link is active when its weight exceeds the threshold —
otherwise inactive.
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The semantic network is very similar to the social network, in a dual manner:

Definition 2 (Semantic network). The semantic (or conceptual) networkC is the network of joint
appearances of concepts within articles, where nodes are concepts and links are co-occurrences.
C = (C, λC), similarly toS.

When a new article appears, new concepts are possibly added to the network, and new links are
added between co-appearing concepts. Here again, as in the case of the social network, one can use a
weighted network to render various strength on co-occurrences. However, the whole point is to define
precisely what aconceptshould be. Is it a paradigm like“universal gravitation”, a scientific field
like “molecular biology”, or a simple word like“interferon” ? In particular, what is a concept such
that we can observe its appearance in articles? This notion needs be not too precise nor too wide.
For instance, authors provide their articles with keywords: apparently, considering these keywords as
concepts seems to constitute a relevant level of categorization while being a convenient idea. However,
such keywords are likely to be unreliable for authors often arbitrarily omit important keywords, specify
less relevant ones, etc.

In the field of scientometrics for instance, as a discipline dealing with large databases of scientific
articles, words appearing in articles are more and more used as indicators of the topics raised by
authors [30, 37, 47] — that is, the semantics is extracted from article contents rather than metadata.
At first we should thus say thateach term is a concept. This definition does not prevent us from
observing higher-level concepts such as scientific fields or paradigms, since we can easily refer to
these conceptsa posterioriby considering sets of strongly connected terms. For example, we could
interpret the set of frequently co-occuring words{“cell”, “DNA”, “gene”, “genetic”, “genetics”,
“molecular” } asmolecular biology. Moreover, we could proceed only with words present in what we
consider to be the most relevant article data: the title and the abstract — setting aside article content,
for it is rarely available and also because it could involve too many very precise though unrelevant
words. Of course, we should also define a list of words to be ignored, or“stop words”, including
grammatical and unsignificant words (“is”, “with”, “study”, etc.) as well as non-discriminating
words (e.g.,“biology” within a community of biologists).

Binding the two networks As the social network is the network of joint appearances of authors,
so is the semantic network with concepts, establishing an obvious duality between the two networks
which is key to bind them and explain their reciprocal influence. In the same manner as we did with the
previous networks, we link scientists to the words they use, i.e. we add a link whenever an author and
a word co-appear within an article. Hence considering the two networksS andC, we deal with three
kinds of quite similar links: (i) between pairs of scientists, (ii) between pairs of concepts, and (iii)
between concepts and scientists; thus setting up three kinds of binary relations:

(i) a set of symmetrical relationsRS
α ⊂ S × S from the social network to the social network, and

such that givenα ∈ R and two scientistss ands′, we haves RS
α s′ iff the link betweens and

s′ has a weightw strictly greater than the thresholdα.

(ii) a set of symmetrical relationsRC
α ⊂ C×C from the semantic network to the semantic network,

and such that givenα ∈ R and two conceptsc andc′, c RC
α c′ iff the link betweenc andc′ has

a weightw > α.

(iii) a binary relationRα ⊂ S ×C from the social network to the semantic network, and such that
givenα ∈ R, an authors and conceptc, s Rα c iff the link betweens andc has a weightw > α.
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Figure 1: Sample network withS = {s1, s2, s3, s4, s5}, C = {c1, c2, c3, c4, c5, c6, c7} = {biology,
molecular, operon, cDNA, genome, chemical, history}, and relationsRS andRC (solid lines) andR
(dashed lines).

With the special caseα = 0, noticing thatα < α′ ⇒ R(.)
α′ ⊂ R(.)

α , then∀α > 0,R(.)
α ⊂ R(.)

0 :

the relationsR(.)
0 are maximal, i.e. two nodes are related whenever there exists a link binding them,

whatever its weight. To ease the notation, we identifyRS
0 toRS,RC

0 toRC, andR0 toR.

2 Communities in epistemic networks

With these basic structures defined, we now need formal tools to formulate stylized facts about knowl-
edge and people conveying it, notably by looking high-level patterns such as knowledge communities.
As socio-semantic networks are primarily made ofdual-modedata, we should indeed exhibit commu-
nity structures that make use of this duality, instead of relying on one-mode projection which imply
loss of crucial structural information. In particular, structurally equivalent [28] groups of agents using
the same concepts constitute relevant dual-mode communities, asepistemic communities. To describe
these facts, among other two-mode network data methods [14], Galois lattices appear as a suitable
framework for agent-concept categorization — being also widely used as well in conceptual knowl-
edge systems [57] and formal concept classification [20]. White & Freeman have already explored
an application of this theory in mathematical sociology, grouping simultaneously agents and social
events they attend [18].

The goal of this section is to present the Galois lattice theory and show how we can use it to de-
scribe efficiently knowledge community structure from relationships betweenS andC. More broadly,
we wish to suggest that community structure in knowledge-based social networks should be dealt with
more deeply than by simply relying on single-mode characterizations [5].
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2.1 Sets and relations

Let us first consider two finite setsA andB between which we have a binary relationR ⊆ A×B. We
introduce the operation “∧” such that for any elementx ∈ A, x∧ is the set ofB elementsR-related to
x. Extending this definition to subsetsX ⊆ A, we denote byX∧ the set ofB elementsR-related to
every element ofX, namely:

x∧ = { y ∈ B | xRy } X∧ = { y ∈ B | ∀x ∈ X, xRy } (1)

Similarly, “?” is the dual operation so that∀y ∈ B, ∀Y ⊆ B,

y? = {x ∈ A | xRy } Y ? = {x ∈ A | ∀y ∈ Y, xRy } (2)

By definition we set(∅)∧ = B and(∅)? = A. These operations enjoy the following properties:

X ⊆ X ′ ⇒ X ′∧ ⊆ X∧ (3a)

Y ⊆ Y ′ ⇒ Y ′? ⊆ Y ? (3b)

X ⊆ X∧? (4a)

Y ⊆ Y ?∧ (4b)

We also have:

(X ∪X ′)∧ = X∧ ∩X ′∧ (Y ∪ Y ′)? = Y ? ∩ Y ′? (5)

AccordinglyX∧ = (
⋃

x∈X{x})∧ =
⋂

x∈X x∧.

Closure operation More importantly, the following property holds true,1

((X∧)?)∧ = X∧ and ((Y ?)∧)? = Y ? (6)

and therefore we can define the operation “∧?” as aclosure operation[7], in that it is:

extensive, X ⊆ X∧? (7a)

idempotent (X∧?)∧? = X∧? (7b)

and increasing. X ⊆ X ′ ⇒ X∧? ⊆ X ′∧? (7c)

We say thatX is aclosedsubset ifX∧? = X.

2.2 Galois lattices

We now consider the set of couples of subsets ofA andB and build a new structure onto it: given two
subsetsX ⊆ A andY ⊆ B, a couple(X, Y ) is said to beclosed iffY = X∧ andX = Y ?. Yet such
a couple is actually a(X, X∧) whereX∧? = X. Therefore, closed couples correspond obviously to
couples of subsets ofA andB closed under∧?. This will allow us to define a new kind of lattice from
A, B andR. We first recall the algebraic definition of alattice:

Definition 3 (Lattice). A set(L,v,t,u) is a lattice if every finite subsetH ⊆ L has aleast upper
boundin L notedtH and agreatest lower boundin L noteduH under partial-ordering relationv.

1Indeed, (3a) applied to (4a) leads to(X∧?)∧ ⊆ X∧, while (4b) applied toX∧ gives(X∧) ⊆ (X∧)?∧.
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In this respect the set of subsets of a setX provided with the usual inclusion, union and intersection,
(P(X),⊆,∪,∩), is a lattice — and so is aGalois lattice[4]:

Definition 4 (Galois lattice). Given a relationR between two finite setsA andB, theGalois lattice
GA,B,R is the set of everyclosedcouple(X, Y ) ⊆ A×B under relationR: GA,B,R = {(X∧?, X∧)|X ⊆
A}.

GA,B,R provided with the natural partial orderv such that(X, X∧) v (X ′, X ′∧) ⇔ X ⊂ X ′

is indeed a lattice. As Wille points out [57], this structure constitutes a solid formalization of the
philosophical appraisal of a concept characterized by itsextent(the physical implementation or the
group of things denoted by the concept) and itsintent (the properties or the internal content of the
concept). In a pairg = (X, X∧) considered as a formal concept,X may be seen as the extent of
g while X∧ is its intent. For a givenX ⊆ A, X∧ will represent the set of properties shared by all
objects ofX, whereas for a given set of propertiesY ⊆ B, Y ? will be the set of objects ofA actually
fulfilling them. Also, using the strict partial order@, we can talk offormal subconceptby sayingg
is a subconcept ofg′ iff g @ g′. Henceg can be seen as a specification ofg′, since the number of
its properties increases (X∧ ⊃ X ′∧, thus definingg more precisely) while less objects belongs to its
extent (X ⊂ X ′). Conversely,g′ is a“superconcept”or a generalization ofg; we have thus a tool of
generalization and specification of formal concepts [56].

2.3 Applying lattices toS and C

To apply these tools to our networksS andC, we consider the two finite setsS, C, the relationR and
GS,C,R. First, for an authors ∈ S, s∧ = { c | sRc } represents the set of the concepts he talked about
or the fields he dealt with. Proceeding identically with a conceptc ∈ C, c? = { s | sRc } represents
the set of scientists who used the conceptc in at least one of their papers. Then, for a group of authors
S ⊆ S, S∧ represents the words being used by every authors ∈ S, while for a set of wordsC ⊆ C,
C? is the set of agents using every conceptc ∈ C. Moreover, we can easily derive from (5) the words
used by a communityS ∪ S′ by taking the intersectionS∧ ∩ S′∧, or the authors corresponding to the
merger of any two sets of conceptsC ∪ C ′ by takingC? ∩ C ′?.

An example is shown on figure 1. For instance,s4
∧ = {c1, c4, c5} and{c1, c6}? = {s3, s5}. If

we consider the matrixR representing relationR as follows,

R =


1 1 1 0 1 0 0
1 1 0 0 0 0 0
1 0 0 0 0 1 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1


whereRi,j is non-zero whensi R cj , we can easily readsi

∧ on rows andcj
? on columns.

Closure and epistemic categories Seeing concepts aspropertiesof authors who use them (skills in
scientific fields as cognitive properties) and authors asextentsof concepts (implementation of concepts
within authors), one can make a very fertile usage of the latticeGS,C,R by setting up an epistemic
taxonomy with the help of formal concepts made of couples(S, C) with S ⊆ S, C ⊆ C. We may
indeed consider such formal concepts asschools of thoughtconstituted by the community of agents
S working and writing on the fieldC, a formal subconcept simply being a trend inside a school. By
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Figure 2: Representation of the whole Galois lattice of our example – the hierarchy is drawn according
to the partial order@, i.e. “bottom”@“top”. The cultural backgroundS∧ is reduced to “biology”. On
the medium-level, we find formal concepts(s1, s2 ; “biology” , “molecular”), (s1, s4 ; “biology” ,
“genome”), (s3, s5 ; “biology” , “chemical”).

community we understand henceforthepistemic community, that is to say neither a department nor a
group of research.

In addition, we recall that for such a closed couple from the Galois lattice,C = S∧, S = C?

and finallyS = S∧?. S∧? actually represents the set of scientists usingat leastthe same words as
S, “∧?” being a closure operation,S∧? closesthe setS by returning all the scientists related to every
concept shared amongS — once and for all from (7b).2 Admittedly, for a single scientists, s∧? will
certainly be equal tos, since there are strong chances that∀s′ ∈ S, ∃w ∈ s∧ and 6∈ s′∧. Considering
however a subsetS ⊆ S, as its cardinal increases there are more and more chances that the closure of
S reaches an actual community of researchers. We conjecture that there is a relevant level of closure
for which a setS∧?, and identicallyC?∧, is representative of a field or a trend. This idea is to be
compared to Rosch’s basic-level of categorization [42]. This medium level shall constitute a basic-
level of epistemic categorization, whereas above it (“superordinate categories”) the field would be too
general, and too precise under it (“subordinate categories”).3

Comparing dual-mode and single-mode communities Another point of interest is to see whether
single network communities (based on the social or semantic network only) correspond to closed
sets, i.e. whether aS-community is also a∧?-community, and whether aC-community is also a?∧-
community. In other words, are schools of thought and scientific fields also socially and semantically
strongly linked or not? We might also want to compare different definitions of a one-mode community,

2Note that givenS∧ = {c1, ..., cn, c} andS′∧ = {c1, ..., cn, c′}, we haveS′ 6∈ S∧?, S′ not being in the closure ofS,
which might look quite strange as their domains of interest are similar. Yet,(S ∪ S′)∧ = S∧ ∪ S′∧ = {c1, ..., cn}, thus
{c1, ..., cn} defines a (larger) epistemic community which includes bothS andS′.
Another property may help understand better what the closure actually does: givenS∧ = {c1, ..., cn} and S′∧ =
{c′1, ..., c′n} such that∀(i, j) ∈ {1, ..., n}2, ci 6= c′j , we have(S ∪ S′)∧? = S: the closure of the union of two sets of
scientists working on totally different issues is the whole communityS — “there is no way to distinguishS andS′ from
each other with respect to the rest of the community”.

3Interestingly,S∧ also represents the concepts the whole community shares — the“background”, obviously too com-
mon to be discriminating. This set could actually constitute an appropriate companion to the list of stop words mentioned
in §1. On the other hand,C? should not enjoy in general any such property and should be empty: the contrary would mean
that there is at least one author linked toall concepts in use among the whole community.
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using for instance criteria such ask-connectivity4 [39] or various clustering algorithms [19].

2.4 Empirical application

A detailed empirical case study, beyond the toy example we presented here, would take too much
room in this paper. Interested readers may nonetheless find a study based on this approach for a
real-world community of embryologists working on the “zebrafish”, between 1990 and 2003, both
for a static case [45] and for a longitudinal study [46] — the taxonomic evolution of this scientific
field given through Galois lattices has been successfully compared to taxonomies given by domain
experts. In addition, the conjecture of the existence of a relevant basic-level of categorization, linked
to a particular distribution of agent set sizes of epistemic communities, is also empirically confirmed.

3 Network dynamics

3.1 Intertwining both networks

A model should first try to account for the network evolution by building upon existing models while
including the improvements offered by the present theoretical framework. For instance, the pio-
neering growing-network model proposed by Barabasi & Albert [3] and many subsequent models
[6, 10, 11, 15, 16, 17, 21, 23, 25, 29, 40, 51], are traditionally directed by two key phenomenas: (i)
a constant rate of growth(the number of nodes at any timet is αt), justified by the fact that real
networks “grow by the continuous addition of new nodes” [1]; and (ii)a preferential attachment—
external (new nodes join the system) as well as internal (links appearing between existing nodes). The
preference between agents is usually based on the preference for already well-connected agent (as
more recognized, famous, reliable or simply efficient), the number of common neighbors, a notion of
fitness, the value of centrality or distance, etc.

Yet agents also interact according to preferences based on non-structural features and usually
prefer to interact with similar agents. Using semantic features is required to characterize this phe-
nomenon, which is traditionally denoted by the term “homophily”. While it is already well-documented
in social science [26, 52, 31], very few models make use of it [8, 49] and none seems to take into
account the evolution of semantic characteristics themselves. If we assume yet that homophily is
essential to the system dynamics, the preferential attachment must be modified in order to take into
account similarity between agents or between concepts: nodes will indeed join preferentially more
connected but also more similar nodes. Thus, the preferential attachment probability of a node to
another nodeΠ should dependinter alia, for a given scientists ∈ S, both (i) on the degree of other
scientistss′ ∈ S (usingRS) and (ii) on the“distance” betweens∧ ands′∧ – ordual distancebetween
s ands′ (usingRC andR). We need not focus on a particular definition for this distance, as long
as it decreases with the number of shared concepts and that it equals 0 for identical intents and 1 for
disjoint intents — it could be based on the classical Jaccard coefficient for example, i.e.(s, s′) ∈ S2,

d(s, s′) ∈ [0; 1] = |(s∧\s′∧)∪(s′∧\s∧)|
|s∧∪s′∧| ; which fulfills the above requirements.

Empirically, a different behavior should be expected with respect to such a parameterd: if com-
munities do exist, preferential attachment is indeed likely to depend on a parameter which favors
the reinforcement of similar agents.5 This has been shown to be the case in [44], with a stronger

4The smallest number of nodes to withdraw from a connected (sub)graph to get a disconnected one.
5Newman [32] for instance considers the number of common acquaintances as an explanatory argument for clique

formation; instead, we may assume that collaborations do essentially occur on account of homophily, while this assumption
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propension of interaction between agents sharing more concepts.

3.2 Implementing dual-mode network dynamics

More generally, specifying the list of properties is nevertheless a process driven by the real-world
situationandby the stylized facts the modeler aims at rebuilding and considers relevant for the mor-
phogenesis of both networks. While we only discussed the example of two significant properties (node
degree and semantic distance), measuring preferential interaction behavior relatively to other parame-
ters could be very relevant as well — including social distance, common acquaintances, etc. The goal
is also to exhibit credible as well as non-overlapping, non-correlated properties.

In any case, a first step would be to determine empirically the shape ofΠ so that we can infer
fertile intuitions for designing an analytical value forΠ which could be introduced back into a model.
Note that, although not detailed here, the reasoning holds the same for the preferential attachment in
C. As McPherson & Smith-Lovin suggest [31], homophily has been for long understood as a very
general setting. Consequently, several authors have already carried the empirical measurement of this
phenomenon [24, 27, 39, 44, 48] — on the side of methods, it is possible to design a credible and
realistic preferential attachment behavior in evolving social graphs using methods of [32] extended in
[44], for any kind of property. Hence, extending these notions to a dual-network framework is rather
straightforward.

In turn, enriching the low-level behavior from a strict social network dynamics to a co-evolving
socio-semantic network is definitely within reach, as is carried e.g. in [43]: eventually, reconstruction
of stylized factsrelevant for epistemic communitiescannot be done without considering the morpho-
genesis of the whole socio-semantic structure.

Conclusion

Most studies carried onto social networks or semantic networks have considered each of these net-
works independently. We proposed here a framework for binding them and pointing out their very
duality as well as expressing stylized facts about them. The Galois lattice theory has proved useful
in helping introduce key notions such as schools of thought through closure, basic-level of catego-
rization of a scientific field, and in general for characterizing scientific communities. As such, we
defined a high-level structure (epistemic communities) from low-level descriptions (relationships be-
tween agents and concepts) specifically using the duality of socio-semantic networks. Next we showed
how to apply this framework to model thecoevolutionof social and cultural networks, suggesting that
low-level dynamics should reflect empirically measured generalized preferential interaction behavior.
Instead of considering social and semantic networks separately, we suggested that interactions should
take into account the reciprocal influence of both networks — therefore introducing, for instance, the
notion of dual distance.

More than providing a theoretical framework, we intend to enable the comprehension of stylized
facts proper to knowledge networks that distinguish them from several other classes of real-world
networks. Going further in this effort of pointing out some applications of such a dual framework in
the observation, description and eventually modeling of epistemic network dynamics, this paper is a

does not contradict structural arguments such as those based on common acquaintances: two agents are all the more likely
to have the same profile that they share many acquaintances.
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preliminary attempt at naturalizing and operationalizing cultural epidemiology — describing and ex-
plaining propagation of concepts through the social networkas well asthe deformation of the scientist
network by the joint structure of the semantic network; in other words, study these networks as an
integrated epistemic network.
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