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Abstract. We develop a unifying approach for complexity measures, based
on the principle that complexity requires interactions at different scales of
description. Complex systems are more than the sum of their parts of any
size, and not just more than the sum of their elements. We therefore analyze
the decomposition of a system in terms of an interaction hierarchy. In
mathematical terms, we present a theory of complexity measures for finite
random fields using the geometric framework of hierarchies of exponential
families. Within our framework, previously proposed complexity measures
find their natural place and gain a new interpretation.
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1. Introduction

Although the paradigm of complexity turned out to be very fruitful in qual-
itatively understanding emergent phenomena in physical, biological, and social
systems, the diversity of corresponding formalizations makes it difficult to ap-
proach a unified theory of complexity. On the other hand, in order to give
complex systems research an adequate methodology that is both general and
flexible, it becomes ever more important to work towards such a theory, and, in
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particular, to quantify complexity. We believe that new ways of looking at the
whole spectrum of approaches could allow for its natural integration into a gen-
eral scheme. In this article we provide some support for this belief by applying
ideas from information geometry [Am, Ay1, AW, AK, MA], in order to discuss
several complexity measures for finite random fields from a unifying perspective.

Many researchers agree that a system is complex if it exhibits different struc-
tures at different levels of description or if a more detailed description reveals
new structural properties. It is not unambiguously clear, however, in what
sense structures should be compared and which structures then should count
as complex, or more complex than others, and consequently, many different
notions of complexity have been proposed. Nevertheless, there do exist some
insightful and quantitative approaches in certain fields on which one may hope
to build. For time series, for instance, measures have been developed that cap-
ture the descriptional complexity of the underlying process [Gr, CF, BNT]. But
also inspiration from properties of biological and cognitive systems has lead to
formal treatments of complexity, e.g. in [TSE1].

We now discuss the organization of our paper and its main results: In Sec-
tion 2 we review some information-theoretic quantities that are based on the
fundamental concept of entropy and formalized in terms of stochastic processes
and therefore allow for an information theoretic interpretation. In Section 3 we
use them to discuss some important and well-known measures from complex-
systems theory in a unifying way within the setting of finite random fields. This
unified view leads to some new relations. In particular, the complexity measure
by Tononi, Sporns and Edelman [TSE1] turns out to be related to the more
established notions of multi-information and excess entropy. The Sections 4
and 5 represent the second part of the paper, where we develop a geometric
interpretation for complexity in the spirit of these complexity measures from
Section 3 within the setting of information geometry. This leads to a general
geometric structure for complexity measures that is based on a clear distinction
of the interaction orders of the nodes in the system. The geometric framework
thus expresses the idea that complexity requires interactions at different scales
of description by using an explicit decomposition in terms of an interaction hi-
erarchy.
We can thus quantify the insight that complex systems are more than the sum

of their parts, and not just more than the sum of their elements.

2. Preliminaries from Information Theory

In this section, we recall some basic notions from information theory; a ref-
erence is [CT]. We consider a set V of 1 ≤ N < ∞ nodes with state sets Xv,
v ∈ V . Given a finite subset A ⊆ V , we write XA instead of ×v∈AXv, and the
total configuration set is XV . |XA| is the number of elements in XA, that is,
the number of different states that can be attained on A. We have the natural
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projections

XA : XV → XA, (xv)v∈V 7→ (xv)v∈A

Given a probability vector p on XV , the XA become random variables. For
three subsets A,B,C of V , we shall use the following information-theoretic
quantities: The entropy of XC is defined as

Hp(XC) := −
∑

z∈XC

Pr(XC = z) log2

(

Pr(XC = z)
)

This quantity is a natural measure of the uncertainty that one has about the
outcome of XC , that is, the information one expects to gain by observing that
outcome. The maximal value for the entropy is log2(|XV |). If we subtract the
entropy from this maximal value, we get a measure for the information about
the outcome of XC contained in the probability vector p: log2(|XV |)−Hp(XC).
Knowing the outcome of XB reduces the uncertainty that one has about the
outcome of XC . The remaining uncertainty is then quantified by the conditional

entropy of XC given XB :

Hp(XC |XB) := −
∑

y∈XB , z∈XC

Pr(XB = y, XC = z) log2

(

Pr(XC = z |XB = y)
)

In terms of these entropy measures, the mutual information of XC and XB is
given by

Ip(XC : XB) := Hp(XC) − Hp(XC |XB)

which measures the reduction of the uncertainty of the outcome of XC given
the outcome of XB and vice versa.
The conditional mutual information, which is defined as

Ip(XC : XB |XA) := Hp(XC |XA) − Hp(XC |XA,XB) ,

quantifies the reduction of the uncertainty of the outcome of XC given the out-
come of XB , if the outcome from XA was already known.
Having a quantity that depends on p, say Hp(XV ), we denote the correspond-
ing function by the same symbol without specifying p. For example, we write
H(XV ) for the function p 7→ Hp(XV ).

3. Information-Theoretic Complexity Measures

The information-theoretic quantities of Section 2 can be used to define some
complexity measures for random fields: We shall define multi-information and
excess-entropy as such measures and embed them into the more general setting
of TSE complexity.

3.1. Multi-information. The multi-information is defined as

Ip(XV ) =
∑

v∈V

Hp(Xv) − Hp(XV )(1)

=
(

log2(|XV |) − Hp(XV )
)

−
∑

v∈V

(

log2(|Xv|) − Hp(Xv)
)

(2)
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It quantifies the total statistical interdependence of the nodes with respect to
the joint distribution p. In the literature it is also referred to as redundancy ,
integration, and complexity [St, SV, TSE1, Mo, AW]. It becomes zero if and
only if the probability distribution p has the product structure

(3) p(x) =
∏

v∈V

pv(xv) ,

where each pv denotes the image distribution of the projection Xv. In partic-
ular, the multi-information vanishes in the case of complete randomness, given
by the uniform distribution, and in the case of complete determinism, given
by a distribution that is concentrated in one configuration. This property is
frequently stated as a necessary but not sufficient requirement for a quantity to
be considered as a complexity measure. Moreover, the representation (2) shows
that the multi-information quantifies the excess of the system’s total informa-
tion in relation to the sum of its elements’ informations. The difference structure
of this quantity is perfectly consistent with the concept that complex systems

are more than the sum of their elements. This provides further support for
considering the multi-information as a natural candidate for a complexity mea-
sure. On the other hand, maximizing the multi-information leads to probability
distributions that are in some sense very simple and can hardly be considered
as complex. The general structure of maximizers of the multi-information has
been studied in [AK]. To simplify the presentation, we consider systems with
elements v ∈ {1, . . . , N} = V and corresponding state sets Xv = {0, 1} for all
v ∈ V . A global maximizer of the multi-information is then given by a family
σi : {0, 1} → {0, 1}, i = 2, . . . ,N , of bijective maps. They allow for an embed-
ding σ : {0, 1} → {0, 1}N = XV , x 7→ (x, σ2(x), . . . , σN (x)). The image Cσ of
this map consists of exactly two elements c1 and c2, and the the corresponding
uniform distribution on this code is given by 1

2 (δc1 + δc2). It is not hard to see

that the global maximizers of the multi-informations are exactly these 2N−1

distributions [AK].
Any sequential decomposition of the system is consistent with a corresponding
decomposition of the multi-information into a sum of mutual informations. In
order to make this point more precise, we describe a natural way of constructing
a sequence of partitions. The idea is to divide the system into finer and finer
partitions according to the following rule:

(1) Initialization: Start the sequence of partitions by defining as first par-
tition the trivial one: ξ1 := {V }

(2) Step k → k+1: If all atoms of the partition ξk have exactly one element,
then stop. Otherwise, choose one atom Ak of the partition ξk that has
at least two elements and divide it into two non-empty and disjoint sets
A1

k and A2
k with Ak = A1

k ∪A2
k. Define the new partition ξk+1 according

to

ξk+1 :=
(

ξk \ {Ak}
)

∪ {A1
k, A2

k}

(3) Go to the second step.
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This procedure generates a sequence of bipartitions Ak = A1
k ∪ A2

k, and for all
k we have the decomposition rule

(4) I(XAk
) = I(XA1

k
: XA2

k
) + I(XA1

k
) + I(XA2

k
) ,

which finally leads to the chain rule for multi-information

(5) I(XV ) =

N−1
∑

k=1

I(XA1
k

: XA2
k
) .

In the next section we will introduce a second dependence measure that has
similar decomposition properties.

3.2. Excess entropy. The excess entropy was originally introduced under the
name effective measure complexity [Gr] in the context of time series as the min-
imal amount of memory required for an optimal prediction. Closely related
measures are the statistical complexity of ǫ-machines proposed in [CY] and the
predictive information [BNT]. In a recent overview [CF], the effective measure
complexity was termed excess entropy which we will use in the following be-
cause it relates directly to one definition of this quantity.
In a time series, the set of nodes V exhibits a temporal order X1,X2, . . . ,XN , . . . ,
and in what follows we assume that the distribution of this sequence is invari-
ant with respect to the shift map (x1, x2, . . . ) 7→ (x2, x3, . . . ). This allows for
identifying limits of sequences in the way we are going to do.
The uncertainty of a single observation XN is given by the marginal entropy
H(XN ). The uncertainty of this observation when the past N − 1 values are
known is quantified by

hN := H(XN |X1, . . . ,XN−1)

with the limit, if it exists,

(6) h∞ := lim
N→∞

hN

called the entropy rate of the process. The excess entropy of the process with
the entropy rate h∞ is then

(7) E := lim
N→∞

(H(X1, . . . ,XN ) − Nh∞)

It measures the nonextensive part of the entropy, i.e. the amount of entropy of
each element that exceeds the entropy rate.
The excess entropy of a finite string can be defined as

EN := H(X1, . . . ,XN ) − NhN(8)

=
N
∑

k=1

(hk − hN )(9)
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One straightforward generalization to a finite system V can be made by assum-
ing an arbitrary order v1, v2, . . . , vN of the elements leading to

E(XV ) =
N
∑

k=1

(

H(Xvk
|Xvk−1

, . . . ,Xv1
) − H(Xvk

|XV \{vk})
)

(10)

= H(XV ) −
∑

v∈V

H(Xv |XV \{v})(11)

= (N − 1)

(

1

N − 1

∑

v∈V

H(XV \{v}) − H(XV )

)

(12)

The representation (11) shows that the excess entropy is independent of the
initially chosen order of the elements. One can also regard (11) as generaliza-
tion of (8) with hN replaced by the conditional entropy H(Xv|XV \{v}) averaged
over all v.
The excess entropy shares some features of the multi-information. As we see
from (12), it has, up to a scaling factor, an entropy difference structure simi-
lar to the structure (1) of the multi-information. The excess entropy also has
the property that it vanishes in the case of independent nodes, which have a
joint distribution of the product structure (3). Furthermore, for binary units
the maximal value of the excess entropy coincides with the maximal value of
the multi-information, which is N − 1. But the structure of the maximizers is
characterized by the idea of a parity code instead of the idea of a repetition
code, which we used for describing the maximizers of the multi-information.
To be more precise, consider the set {0, 1} as a finite field, and define the
following linear map between finite vector spaces: σ : {0, 1}N−1 → {0, 1}N ,

(x1, . . . , xN−1) 7→ (x1, . . . , xN−1,
∑N−1

i=1 xi). Then it is not hard to see that the
uniform distribution on the image of σ (parity code) globally maximizes the
excess entropy.
In fact, within the time series context, the excess entropy has been considered
as a distinguished complexity measure, determined by learning-theoretical as-
sumptions [BNT]. For the case of finite systems this complexity measure was
mentioned in passing in [TSE2]. The excess entropy is monotonically increasing
with the system size because

(13) E(XV ∪{vN+1}) − E(XV ) =

N
∑

i=1

I(Xvi
: XvN+1

|XV \{vi}) ≥ 0

Using the notation introduced in Section 3.1, we have the following decompo-
sition similar to (5):

(14) E(XV ) =
N−1
∑

k=1

I(XA1
k

: XA2
k
|XV \(A1

k
∪A2

k
)) .

This can be proven by induction introducing the excess entropy E(ξk) of the
partition ξk as

E(ξk) := H(XV ) −
∑

A∈ξk

H(XA|XV \A) .
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For k = 2 we have

E(ξ2) = H(XA1
1
,XA2

1
) − H(XA1

1
|XA2

1
) − H(XA2

1
|XA1

1
)

= I(XA1
1

: XA2
1
) .

Now let us consider the step from partition ξk to a partition ξk+1. The excess
entropy with respect to the finer partition ξk+1 is given as

E(ξk+1)

= H(XV ) −
∑

A∈ξk+1

Hp(XA|XV \A)

= H(XV ) −
∑

A∈ξk\{Ak}

H(XA|XV \A) − H(XA1
k
|XV \A1

k
) − H(XA2

k
|XV \A2

k
)

= H(XV ) −
∑

A∈ξk

H(XA|XV \A)

− H(XA1
k
|XV \A1

k
) − H(XA2

k
|XV \A2

k
) + H(XA1

k
∪A2

k
|XV \Ak

)

= E(ξk) + I(XA1
k

: XA2
k
|XV \{A1

k
∪A2

k
}) .

This proves the chain rule (14). In comparison to the chain rule for the multi-
information the mutual informations are now conditioned on the rest of the sys-
tem, which means that only the new information at each step of refining the par-
tition is considered. Note that nevertheless it is possible that Ep(XV ) > Ip(XV ).

3.3. TSE complexity. The multi-information and the excess entropy can be
considered as extreme cases of a general definition that appears in a complexity
measure introduced by Tononi, Sporns, and Edelman [TSE1]. In order to define
the TSE complexity, we first introduce

C(k)(XV ) := I(XV ) −
N

k
(

N
k

)

∑

A⊆V
|A|=k

I(XA)(15)

=
N

k
(

N
k

)

∑

A⊆V
|A|=k

H(XA) − H(XV )(16)

For k = 1 we recover the multi-information, and for k = N − 1 we get, up to a
constant factor, the excess entropy:

(17) I(XV ) = C(1)(XV ), E(XV ) = (N − 1)C(N−1)(XV )

Furthermore, if we assume independence of the nodes, then we get

C(k)
p (XV ) =

N

k
(

N
k

)

∑

A⊆V
|A|=k

∑

v∈A

Hp(Xv) −
∑

v∈V

Hp(Xv)

=
∑

v∈V

N

k
(

N
k

)

(

N − 1

k − 1

)

Hp(Xv) −
∑

v∈V

Hp(Xv)

= 0 .
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Thus, extending the two natural examples given by k = 1 and k = N − 1
to all the intermediate k’s does not affect the property of vanishing in the

independence case. In particular, the C
(k)
p (XV ) vanish in the two extreme

cases of complete randomness, Hp(XV ) = log2(|XV |), and complete determin-
ism, Hp(XV ) = 0. The TSE complexity is defined as a weighted sum of the

C(k)(XV )’s:

(18) C(XV ) :=

N−1
∑

k=1

k

N
C(k)(XV )

Although our main focus will be on the multi-information and the excess en-
tropy as contributions to the TSE complexity, there is another interesting re-
lation between the TSE complexity and the excess entropy that is provided by
the transient information. We address this connection in the next section.

3.4. Transient information. In [CF, FC] another complexity measure, the
transient information, was introduced to measure the complexity of periodic
sequences. The excess entropy (7) for a periodic sequence of period P is equal
to log2 P . Therefore the excess entropy cannot be used to distinguish the com-
plexity of different sequences with the same period. Using the excess entropy
(7), the transient information of an infinite sequence was defined as

(19) T =

∞
∑

k=1

(E + kh∞ − H(X1, . . . ,Xk)) .

Whereas the excess entropy was a bound for the amount of memory necessary
for a model that provides optimal predictions the transient information quan-
tifies the amount of information that has to be extracted from the process in
order to identify the state of the system [CF].
Using the excess entropy (11) for an arbitrary system consisting of N elements,
one can easily define a corresponding transient information as

(20) T (XV ) =

N
∑

k=1






E(XV ) +

k

N

∑

v∈V

H(Xv |XV \{v}) −
1
(

N
k

)

∑

A⊆V
|A|=k

H(XA)






.

With (11) we derive the equivalent expression

(21) T (XV ) =
N − 1

2
E(XV ) +

N
∑

k=1







k

N
H(XV ) −

1
(

N
k

)

∑

A⊆V
|A|=k

H(XA)






.

From (21), we see a relationship between the excess entropy and the above
complexity:

(22) T (XV ) + C(XV ) =
N − 1

2
E(XV ) .
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As both, T (XV ) and C(XV ) are non-negative quantities, we see that they can
be only positive if the excess entropy E(XV ) is positive. The following figure
illustrates the equality (22).

1 2 N
k

Figure 1: The curved dotted line represents the graph of the function k 7→ 〈H〉k :=
1

(N

k)

∑

A⊆V

|A|=k

Hp(XA). The lower dotted linear graph is given by k 7→ k
N

Hp(XV ), and the

total length of the vertical lines between these two functions is nothing but the complex-

ity Cp(XV ). The upper linear graph is given by k 7→ Ep(XV )+ k
N

∑

v∈V Hp(Xv|XV \{v}),

and the total length of the vertical lines between this graph and the curved graph is

nothing but the transient information Tp(XV ). The sum of Tp(XV ) and Cp(XV ) is

then equal to the total length of all vertical lines between the two linear graphs, which

is N−1
2

E(XV ). This is exactly the statement of (22).

4. Preliminaries from Information Geometry

4.1. Projections onto exponential families. Given a nonempty finite set
X , we denote the set of probability distributions on X by P̄(X ). The support

of p ∈ P̄(X ) is defined as supp(p) := {x ∈ X : p(x) > 0}. To simplify the
arguments we shall mainly consider the set P(X ) of probability distributions
with total support. With the exponential map

exp : R
X → P(X ), f 7→

exp(f)
∑

x∈X exp(f(x))

an exponential family is defined as the image exp(V) of a linear subspace V of
R
X . The “distance” (relative entropy, KL-divergence) of two distributions p

and q is measured by

D(p ‖ q) :=

{

∑

x∈X p(x) log2
p(x)
q(x) , if supp(p) ⊆ supp(q)

∞ , otherwise.
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Given an exponential family E , the function

P̄(X ) → R, p 7→ D(p ‖ E) := inf
q∈E

D(p ‖ q)

is continuous. For a positive distribution p ∈ P(X ), there exists a unique
distribution ΠE(p) ∈ E with

D(p ‖ΠE (p)) = D(p ‖ E)

4.2. Interaction spaces. We now use the compositional structure of XV in
order to define exponential families given by interaction spaces. We decompose
x ∈ XV in the form x = (xA, xV \A) with xA ∈ XA, xV \A ∈ XV \A, and define
IA to be the subspace of functions that do not depend on the configurations
xV \A:

IA :=
{

f ∈ R
X : f(xA, xV \A) = f(xAx′

V \A)

for all xA ∈ XA, and all xV \A, x′
V \A ∈ XV \A

}

.

In the following we use these interaction spaces as building blocks for more gen-
eral interaction spaces and associated exponential families. The most general
construction is based on a set of subsets of V , a so-called hypergraph. Given
such a set A ⊆ 2V , we define the corresponding interaction space by

IA :=
∑

A∈A

IA

and consider the corresponding exponential family exp(A ) := exp(IA ). If
two sets A1,A2 ⊆ 2V have the same maximal subsets of V as elements, then
obviously exp(A1) = exp(A2). We define the following order relation: A1 � A2

if for all A1 ∈ A1 there exists some A2 ∈ A2 with A1 ⊆ A2. This implies

(23) A1 � A2 ⇒ exp(A1) ⊆ exp(A2)

In general, there is no explicit formula for the projections onto these expo-
nential families and the corresponding distances. But in special situations,
this is possible, and, in these geometric definitions, we recover the well known
information-theoretic quantities from Section 2:

Examples.

(1) If A = {∅}, then

Πexp(A )(p)(x) =
1

|XV |
, D(p ‖ exp(A )) = log2(|XV |) − Hp(XV )

(2) If A = {A} with a non-empty subset A of V , then

Πexp(A )(p)(x) =
1

|XV \A|
p(xA)

D(p ‖ exp(A )) = log2(|XV \A|) − Hp(XV \A |XA)



11

(3) Let {A,B,C} be a partition of V into three subsets, and A := {A ∪
C,B ∪ C}. Then

Πexp(A )(p)(x) =
p(xA, xC) p(xB , xC)

p(xC)

D(p ‖ exp(A )) = Ip(XA : XB |XC)

(4) Let A = {A1, . . . , Ar} be a partition of V . Then

Πexp(A )(p)(x) =

r
∏

i=1

p(xAi
)

D(p ‖ exp(A )) =
r
∑

i=1

Hp(XAi
) − Hp(XV )

As a special case for r = 2 we recover the mutual information.

4.3. Hierarchies of exponential families. For an increasing sequence

A1 � A2 � · · · � AL

of sets Ak ⊆ 2V , k = 1, . . . , L, by (23) one has an associated hierarchy of
exponential families:

exp(A1) ⊆ exp(A2) ⊆ · · · ⊆ exp(AL).

With p(k) we denote the projection of p onto the exponential family exp(Ak).
Then the Pythagoras theorem for the relative entropy implies the following
decomposition:

(24) D(p ‖ p(1)) =

L
∑

k=2

D(p(k) ‖ p(k−1)) + D(p ‖ p(L)).

Applied to specific hierarchies this leads to some well-known chain rules.

Examples (Chain Rules).

(1) We start with the following example V := {1, . . . ,N},

Ak := {1, . . . , k − 1}, Ak := {Ak}, k = 1, 2, 3, . . . ,N.

In this case the decomposition (24) becomes

log2(|XV |) − Hp(XV ) =

N
∑

k=1

(

log2(|Xk|) − Hp(Xk|X1, . . . ,Xk−1)
)

.

This is equivalent to the chain rule for the entropy

Hp(XV ) =
N
∑

k=1

Hp(Xk|X1, . . . ,Xk−1).

(2) Consider the sequence ξk, k = 1, . . . ,N , of partitions that we defined
in Section 3.1. Then (24) becomes the chain rule (5) for the multi-
information.
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5. The Geometric View of Complexity

Here we consider a hierarchy of exponential families that has been studied
by Amari [Am].

Ak := {A ⊆ V : |A| = k}, k = 0, . . . ,N.

This implies the following hierarchy of exponential families:

F (k) := exp(Ak), k = 0, . . . ,N.

Here, F (0) contains exactly one element, namely the center of the simplex (uni-

form distribution), F (1) is the set of factorized distributions (complete inde-

pendence), and F (N) coincides with the whole simplex P(XV ). The distance
D(p ‖ p(1)) is nothing but the multi-information among the units, which we
have already introduced in Section 3.1. As we have seen, the maximizers of
the multi-information have a very simple structure. It turns out that they
are all contained in the topological closure of F (2) [AK]. This fact indicates a
geometric reason why multi-information should not be considered as the right
complexity measure. In order to make this point clear we have to decompose
the multi-information into the contributions D(p(k) ‖ p(k−1)), k = 2, . . . ,N , to
the stochastic interdependence that cannot be explained by interactions of order
≤ k − 1 [Am]. More precisely, we have

D(p ‖ p(1)) =

N
∑

k=2

D(p(k) ‖ p(k−1)).

The fact that all global maximizers of the multi-information are contained in
the closure of F (2) implies that they are completely characterized by second-
order marginals, and therefore we have D(p(k) ‖ p(k−1)) = 0 for all 3 ≤ k ≤ N in
that case. This means that the maximization of the sum of all the contributions
D(p(k) ‖ p(k−1)), which is the multi-information, leads to just one contribution,

namely D(p(2)‖p(1)), which has the large value (N − 1) log2(2). If we interpret

p(2) as a “sum” of all marginals pA, |A| ≤ 2, then p is nothing but the sum of
its parts of size ≤ 2. In order to quantify complexity, this observation suggests
to relate the whole not just to its elements (parts of size one) but to all its
constituent parts of any size. In this sense, complex systems are more than the

sum of their parts, and not just more than the sum of their elements. Therefore,
we interpret D(p ‖ p(k)) as the distance of p from the sum of its parts pA, where
A ⊆ V has size ≤ k, and consider a weighted sum of these distances as a
general structure for complexity measures. More precisely, with a weight vector
α = (α(1), . . . , α(N − 1)) ∈ R

(N−1) we set:

Cα(p) :=

N−1
∑

k=1

α(k)D(p ‖ p(k))(25)

=

N
∑

k=2

(

k−1
∑

i=1

α(i)

)

D(p(k) ‖ p(k−1))(26)

As we have seen, the multi-information can be represented in this way by set-
ting α(1) := 1, and α(k) := 0 for k ≥ 2. This makes clear that our ansatz
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provides a general structure, in place of specifying a distinguished complexity
measure. If one wants to specify such a measure, one has to identify the cor-
rect weight vector α by means of additional assumptions. Generating complex
systems would then require forcing all contributions D(p(k) ‖ p(k−1)) to display
a specific shape of behaviour as k increases. A similar intuition is reflected by
the structure (18) of the TSE complexity, which we have discussed in Section
3.3. Within the geometric framework, this comparison suggests to relate the

C
(k)
p (XV ) to our distances D(p ‖ p(k)), which appear in the sum (25). Inter-

preting the representation (15) as deviation of the total stochastic dependence
Ip(XV ) from the dependencies up to order k one would expect that there is a

close relation between the two quantities C
(k)
p (XV ) and D(p ‖ p(k)). In order

to have a better understanding of their relation, we consider the special case
where N is a multiple of k, say N = r ·k with r ∈ N, and a corresponding parti-
tion ξ = {A1, . . . , Ar} of V into r subsets with cardinality k (k-partition). For

ξ we obviously have D(p ‖F (k)) ≤ D(p ‖ exp(ξ)). Denoting the total number
1
r!

(

N
k

)(

N−k
k

)

· · ·
(

N−(r−1)k
k

)

of k-partitions by L, this directly implies

(27) D(p ‖ exp
(

⋃

ξ
)

) = D(p ‖F (k)) ≤
1

L

∑

D(p ‖ exp(ξ)) .

Here, the union on the left-hand side and the sum on the right-hand side are
taken over all k-partitions ξ. It turns out that the mean on the right-hand side

is nothing but C
(k)
p (XV ):

1

L

∑

ξ

k-partition

D(p ‖ exp(ξ))

=
1

L

∑

ξ={A1,...,Ar}

k-partition

Ip(XA1
, . . . ,XAr )

=
1

L

∑

ξ={A1,...,Ar}

k-partition

r
∑

i=1

Hp(XAi
) − Hp(XV )

=
1

L

∑

A⊆V
|A|=k

r

r!

(

N − k

k

)

· · ·

(

N − (r − 1)k

k

)

Hp(XA) − Hp(XV )

=
N

k
(

N
k

)

∑

A⊆V
|A|=k

Hp(XA) − Hp(XV )

= C(k)
p (XV )

The inequality (27) can now be written as

(28) D(p ‖ p(k)) ≤ C(k)
p (XV ) ,

and it represents a convexity-like property, which provides some intuition on the
difference between the TSE complexity and the following geometric modification
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of it:

C∗
p(XV ) :=

N−1
∑

k=1

k

N
D(p ‖ p(k))

=

N
∑

k=2

(k − 1)k

2N
D(p(k) ‖ p(k−1))

This modification corresponds to (25) with α(k) = k
N

.

6. Conclusions

Complexity is considered as emerging from interactions between elements,
or, better and more generally, parts of a system. When formalizing this in
terms of information-theoretic quantities, one is led to interactions of random
variables. We have carried out such a formalization for finite systems. In order
to analyze interactions, we implement the idea of decomposing the stochastic
dependence among the parts of a given system. Such a decomposition needs
to go beyond representations by marginal entropies, because those usually do
not provide a complete decomposition of stochastic dependence. For our more
general analysis, information geometry provides the natural framework of hi-
erarchies of exponential families that makes an “orthogonal” decomposition of
the underlying joint distribution possible with respect to the interaction or-
der. While well-known complexity measures such as multi-information, excess
entropy, or the TSE complexity are defined in terms of marginal entropies we
propose a family of complexity measures (25) that is directly linked to this “or-
thogonal” decomposition of the stochastic dependence. Although we think that
the corresponding hierarchy of exponential families plays a distinguished role
within the analysis of complexity, the general information-geometric method al-
lows for studying other hierarchies and offers both flexibility of application and
a comprehensive view of complexity. We hope that this geometric view will be
used to identify and analyze new “dimensions” of complexity in a transparent
manner.
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