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We introduce a mathematically robust measure for food web intervality. Intervality of

a food web is related to the number of trophic dimensions characterizing the niches

in a community. We aim to determine the minimum number of variables required to

describe the factors that influence the trophic organization of the species in a com-

munity. We find that empirical food webs are not interval in the strictest sense of the

definition. However, upon comparison to suitable null hypotheses, we conclude that

empirical food webs exhibit a strong bias toward contiguityof prey, that is, toward

intervality. Indeed, we demonstrate that species and theirdiets can be mapped onto

a single dimension, an insight that must guide ongoing efforts to develop dynamical

models of ecosystems.

Introduction

In spite of their “baroque” complexity, the structure of natural food webs displays a number of remark-

ably simple regularities1,2,3,4,5,6,7,8,9,10. The existence of these empirical regularities has prompted sev-

eral researchers to develop simple models that aim to identify the mechanisms that underly them. Three

“static” models, the niche model of Williams & Martinez2, the nested-hierarchy model of Cattinet al.8,

and the generalized cascade model of Stoufferet al.10, predict key statistical properties of food webs

from a variety of environments, including deserts, rain forests, lakes and estuaries.
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Stouffer et al.10 demonstrated that these three models share two fundamentalmechanisms which

account for the models’ success in reproducing the empirical patterns: (i) Species form a totally ordered

set in niche space, that is, species can be ordered along a single niche dimension; (ii) Each species has

an exponentially-decaying probability of preying on a given fraction of the species with lower niche

values10.

In spite of the above similarities, the models do differ in significant ways. An important difference

concerns how species’ prey are organized along the single dimension. In the niche model, species prey

upon a contiguous range of prey. In the nested-hierarchy andgeneralized cascade models, in contrast,

the diets are not restricted to a contiguous range. This difference implies that these models give rise

to networks with different intervality (Fig. 1). Niche model generated food webs are, by definition,

interval while, for the vast majority of cases, food webs generated according to the nested-hierarchy and

generalized cascade models are not.

The idea of intervality in complex food webs was introduced by Cohen11, who reported, as did

subsequent studies1,12,13,14, that the vast majority of empirical food webs in the literature appeared to

be interval graphs. Significantly, these studies also suggested that the probability that a food web was

interval was strongly dependent upon the number of species represented in the food web, decreasing

from approximately one for very small food webs to close to zero for larger webs1. The food webs

which were analyzed in these studies typically comprised very few species, placing into question the

finding of intervality for larger and more complex food webs1,2,8.

Importantly, the degree of intervality of a food web is related to the number of trophic dimensions

characterizing the possible niches in a community12. More specifically, one may ask what is the mini-

mum number of variables required to describe the factors that influence the trophic organization of the

species in a community? Is this number the same or different for different communities?15,16,17 If a

food web is interval, then the ecosystem can be represented along a single dimension. It has been sug-

gested that a single factor—species’ mass—provides a suitable proxy for this dimension6,18,19,20,21,22.

Any departure from intervality has been understood to implyadditional complexity in the mechanisms

responsible for the structure of the food web.

Recently, the number of higher quality food web data sets hasbeen steadily increasing and these data

have been the focus of a number of recent studies on food web structure2,3,4,5,7,8,10. Thus, we believe that
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a more definitive answer to the question of food web intervality may be at hand.

In this manuscript we address the question of how “non-interval” empirical food webs truly are. To

this end, we define a novel measure of intervality that is morerobust than those already in the literature.

Notably, we find that while empirical food webs are indeed non-interval, their degree of “intervality”

can be understood as aperturbation on an underlyinginterval structure. Our results provide significant

support to the conjecture that ecosystem niches may be mapped onto a single dimension.

Food web intervality

In the studies of Cohen11, 12, Cohenet al.1 and Sugihara13, 14, intervality was defined as a binary vari-

able: a web either “was” or “wasn’t” interval. Recently, twoalternative measures have been used to

quantify the “level of diet discontinuity”8. The first measure,Ddiet, is defined as the number of triplets

of species with an “irreducible gap” divided by the number ofpossible triplets. An irreducible gap is a

gap in a consumer’s diet which cannot be made contiguous because of the constraints imposed by other

consumers’ diets (Fig. 1).

The second measure,Cy4, is defined as the number of chord-less cycles of length four in the con-

sumer overlap graph. In the consumer overlap graph, two consumers are connected if they share at least

one prey. An example of a cycle of length four would be when both speciesA andD share prey with

speciesB andC. This is a cycle because it is possible to travel from any one of the four species to any

other in the consumer overlap graph. If speciesA andD do not share any prey, or similarly species

B andC do not, this cycle is chord-less and the four diets cannot be made contiguous simultaneously.

Therefore, an interval food web will have no chordless cycles in the consumer overlap graph12.

Using these two measures, Cattinet al.8 reported that the non-intervality of empirical food webs is

a significant food web pattern. Unfortunately, bothDdiet andCy4 have limitations that raise concerns

about the validity of their conclusions for an entire ecosystem. Specifically, a cycle of length four in

the consumer overlap graph with a chord can still contain irreducible gaps1. Therefore,Cy4 is, at

best, a lower bound for what Cattinet al.8 intended to measure. Moreover, when computingDdiet, the

normalization factor used by Cattinet al.8 accounts only for multiphagous consumers, not all species.

An irreducible gap can occur in graphs with as few as three multiphagous consumers. However, by

concentrating on species triplets, one will inflate the resulting measure and will not be able to compare
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results for food webs of different sizes and linkage densities. In fact, Cattinet al.8 do little to address

what values ofDdiet or Cy4 would in fact be statistically significant or represent a large deviation from

an interval food web.

In contrast to previous studies, we determine here the intervality of an entire food web. To do this, we

first find the order of species in the food web in such a way as to generate the “most interval” ordering of

the food web. This process yields the best approximation to afood web where the species are organized

along a single dimension. There are various related means bywhich one could define “most interval,” so

we discuss our definition and its justification in detail.

In the idealized case of a fully interval food web, each consumer’s diet is represented by a single

contiguous range. If we consider a non-interval food web andattempt to reproduce the idealized web as

closely as possible, we will want all prey of a given predatorto “appear” as close together as possible

on the resource axis (Fig. 1). For example, for a given consumer, a sequence of two adjacent prey, a gap

of one species, and two more adjacent prey (i.e.,. . .−PP−PP− . . ., where “P ” represents a prey and

“−” represents a non-prey) is preferable to the same sequence but with a gap of two species or larger

(e.g.,. . .−PP−−PP− . . .). Indeed, the former situation would be far more likely given an interval web

which experienced random omissions or changes, such as those possibly introduced by field sampling.

For a food web graphF with S species, there areS! possible species orderingsOk (F) = sk
1s

k
2 . . . sk

S,

with k = 1, . . . , S! . Because of the large number of possible permutations, it iscomputationally unfea-

sible to determine the best ordering through enumeration. It is for this reason that we employ simulated

annealing, a heuristic technique which significantly reduces the computational effort required to find an

optimal or close-to-optimal solution (see Methods and Kirkpatricket al.23 for details).

When attempting to find the most interval ordering, the objective is to minimize the discontinuity

of all predators’ prey (Fig. 1). We thus define a cost functionG (Ok) which is the sum of the gaps in a

consumer’s diet

G (Ok) =
S

∑

i=1

ni
∑

j=1

gk
ij . (1)

Hereni is the number of gaps in the diet of speciesi andgk
ij is the number of species in thej-th gap in

the diet of speciesi for Ok (F). Simulated annealing yields an estimateĜ for the total number of gaps

G ≡ min
∀k

{G (Ok)} of the food web1. The smallerG is the more interval the food web is.

1Note that we useG to refer to the actual minimum number of gaps for a the most interval ordering of a food web, whereas
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Null hypotheses for food web intervality

As happens in other graph and combinatorial problems the value of Ĝ is of little interest24; rather, one

needs to assess whether the measured value ofĜ is significantly different from the expect value for

specific types of graphs. To solve this problem, one must determine the expected value of̂G under

suitable null hypotheses. We have designed three complementary null hypotheses which place different

restrictions upon how consumers’ diets may be organized within a food web.

Our first null hypothesis is a randomized version of the empirical food web. We perform this ran-

domization using the Markov-chain Monte Carlo switching algorithm25 and treat single, double, and

cannibal links separately (see Methods for details). The randomized empirical food web stands as a food

web graph with no constraints placed upon consumers’ diets.That is, in the randomization there is no

correlation between the prey of a given species and their organization on the resource axis. We therefore

expect thatĜ for these randomized food webs will be maximal. Comparison to this null hypothesis thus

provides verification of whether there are any structural regularities in the organization of species’ diets

within empirical food webs.

Our second null hypothesis is food webs generated by the generalized cascade model with the same

number of speciesS and linkage densityz as the empirical food webs. Whereas randomization of the

empirical food webs imposed no structural constraints uponconsumers’ diets, the generalized cascade

model does. Each predator may again select their prey at random, but instead of from the entire resource

axis, their selections are restricted to only those specieswith niche values less than or equal to their

own. This mechanism leads to a smaller number of gaps for species placed lower on the resource axis.

Comparison of the empirical data to this null hypothesis will provide evidence as to whether empirically

observed diets exhibit additional structural constraints.

To this point, our null hypotheses will provide an indication of whether empirical food webs have a

larger number of gaps than would be expected for random structures with no bias toward contiguity of

prey. In order to quantify any bias toward contiguity of preyin empirical food webs, we provide a third

null hypothesis based upon a generalization of the niche model of Williams & Martinez2.

Let us first recall the definition of the niche model. Each of theS speciesi are assigned a niche value

ni drawn from a uniform distribution in the interval[0, 1]. A predatorj in the niche model preys on a

Ĝ refers to the estimate obtained with simulated annealing. The only case when we can be sure thatĜ = G is whenĜ = 0.
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rangerj of the resource axis;rj = njx, wherex is drawn from a beta-distributionp(x) = β(1−x)(β−1).

Hereβ =
(

S2/2L
)

− 1 andL is the number of trophic links in the ecosystem. The center ofthe range

rj is selected uniformly at random in the interval[rj/2, n]. All species whose niche valuesni fall within

this range are considered prey of speciesj.

To allow for a tunable bias toward prey contiguity, we generalize the niche model in the following

manner. First, we reduce the rangerj for a predatorj to r′j = c rj = c njx, wherec is a fixed parameter

in the interval[0, 1]. Because species are distributed uniformly on the resourceaxis, a predatorj with

rangerj has on averagerjS prey. The same applies to the reduced ranger′j , and therefore a predator

has∆k =
(

rj − r′j

)

S = (1 − c) jiS expected prey unaccounted for. Next, we select these∆k prey—

rounded to the nearest integer value—randomly from speciesi with niche valueni ≤ nj that are not

already a prey of speciesj. If c = 0 there is no pressure for contiguity (the web is strictly non-interval),

while for c = 1 we recover the niche model (the web is thus fully interval).

Empirical results

We study 15 empirical food webs from a variety of environments: three estuarine—Chesapeake Bay26,

St. Marks27, and Ythan28; five freshwater—Bridge Brook Lake29, Canton Creek30, Little Rock Lake31,

Skipwith Pond32, and Stony Stream30; three marine—Benguela33, Caribbean Reef34, and Northeast US

Shelf35; and four terrestrial—Coachella Valley36, Grassland37, Scotch Broom38, and St. Martin39.

For each empirical food web we find̂Ge (Table 1). We observe that̂Ge > 0 for all food webs, that is,

none of the webs is interval. The values ofĜe range from1 to 676. To compare these empirical values to

our three null hypotheses, we perform the following steps. For each empirical food web, we generate at

least 100 model food webs corresponding to the respective null hypothesis and obtain̂G for each model

food web.

We then want to be able to estimate the probability that the value Ĝe appears given each null hypoth-

esis. To do this, we examine not just the mean ofĜmodel, but the probability distribution. We employ

the Kolmogorov-Smirnov test40 to each set of model-generated data and find that we cannot reject the

hypothesis that the model-generatedĜ values are drawn from a normal distribution (Fig. 2). Because we

know the distribution which describes the model data, we candirectly obtain an analytical estimate for

the probability of observing a value of̂Gmodel.
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We first compare the set of empirical food webs{F} to the set of randomized food webs{FR}

(Table 1). We note that for every food web,Ĝe <
〈

ĜR

〉

. To estimate the significance of this difference,

we calculate the probability that the model exhibits so low aĜ value. We find that the probability is

exceedingly small; for eleven of the 15 food webs,p < 10−300 (our computer’s numerical precision).

For the remaining four food webs, the largest probability ispR = 4.4 × 10−4.

We now compare the set of empirical food webs to the set of generalized cascade model-generated

food webs{FGC} (Table 2). We again find that for every empirical food web,Ĝe <
〈

ĜGC

〉

. To

estimate the significance of this difference, we calculate the probability that the model exhibits so low

a Ĝ value. We find that, for eight of the eleven food webs, the probability is again exceedingly small

(pGC < 0.005). For the remaining three food webs, the higher probabilityvalues—0.056, 0.15, and0.21

for Skipwith Pond, Coachella Valley, and Caribbean Reef, respectively—are likely due to their large

directed connectances (defined asL/S2) 2.

To this point, our results provide an indication that empirical food webs are significantly more interval

than would be expected for food webs with no bias toward prey contiguity. We now investigate our

generalized niche model to determine how it compares to the empirical data for different values ofc and

therefore different levels of bias toward prey contiguity.The same considerations for applicability that

were discussed for the generalized cascade model hold for the generalized niche model10. Because of

the computational effort required, we have selected only six of the eleven food webs to compare to this

null model. They are Benguela, Bridge Brook Lake, Chesapeake Bay, Coachella Valley, Skipwith Pond,

and St. Marks. It is worth noting that this list includes two of the three food webs withpGC > 0.05:

Coachella Valley and Skipwith Pond.

For each of these six food webs, we compare the empirical foodweb Ĝe to the model
〈

ĜGN

〉

for

c ∈ [0.5, 1.0]. We compare the model and empirical data as before, but focusparticularly upon thez-

score, wherez =
Ĝe−〈Ĝmodel〉

σ
Ĝmodel

. Using thez-score, we can determine95% confidence intervals on the

value ofc for which the empiricalĜ is likely to be observed in the generalized niche model (Fig.2). We

show the results of this comparison in Table 3.

For the six food webs we investigated, we find that the largestvalues ofc which provide statistical

2For densely connected food webs, predators typically have greater numbers of prey. Because these prey are constrained to

have a niche value less than or equal to the predators, the greater the directed connectance the greater the probability that these

prey are contiguous, despite the random predation.
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agreement with the empirical data are remarkably close to one, 0.85 < cmax < 1.00 3. This finding

enables us to quantify in a statistically sound manner the intervality of a food web; specifically,

I(Fi) ≡ cmax({FGN}) , (2)

where{FGN} is the ensemble to model food webs generated according to thegeneralized niche model

and with the same number of species and connectance of the real food webFi. Our empirical finding that

I for the six empirical food webs considered is so large indicates that natural ecosystems are significantly

interval and consequently there is a strong bias toward contiguity in prey selection.

Discussion

The concept of “niche theory” or “niche space” is a fundamental concept in study of ecosystems. Niche

space was classically defined as an “n-dimensional hyperspace” withn given by the innumerable ecolog-

ical and environmental characteristics15,16. Therefore, each species’ niche is the “result” of alln factors

acting upon it and the niche represents the functional role and position of the organism in its community.

The more recent “interpretation” of niche theory, however,relates to the niche providing species an or-

dering or hierarchy16,19,21. This formulation provides a much simpler criterion than Hutchinson’s (1957)

“n-dimensional hyperspace”. Studies have suggested that by using species’ mass or size a food web can

in fact be mapped to a single dimension6,19,20,21,22,41. Furthermore, the placing of species into a single

dimension is a crucial ingredient in many models developed to describe food web structure1,2,8,10.

Recently, however, discussions as to how interval food webstruly are, were renewed by the stark

contrasts between the niche model—and its contiguous rangeof prey—and the generalized cascade and

nested-hierarchy models—and their random predation10. Our results allow us to conclusively demon-

strate that natural ecosystems, while not fully interval, are significantly more interval than would be ex-

pected when compared to suitable random null hypotheses. Moreover, we find the empirical food webs

to be statistically indistinguishable from model food webswhose diets are, on average, at a minimum

85% contiguous. The idea that species and their diets can be so closely mapped to a single dimension

3It should be noted that our results may exhibit some under-estimation of c, in particular as noted earlier for densely

connected food webs such as Coachella Valley and Skipwith Pond.
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represents a tremendous insight that can guide us on how bestto go about developing dynamic ecosystem

models.

A number of future questions must be answered before the question of food web intervality can come

to a close. First and foremost is getting a better understanding of exactly what processes are behind the

deviations from truly interval behavior. While some of the gaps within species diets may be due to

interactions not observed during field sampling, we find it unlikely that all gaps may be attributed to this

factor. It has earlier been noted, albeit on different food webs from those studied here, that ecosystems

with multiple habitats, for example an estuary, were less likely to be interval than single-habitat food

webs1,11. Indeed, once cannot expect food webs containing several habitats to be interval since each

habitat will have its own independent resource axis.

It would likewise be very interesting to examine additionalproperties of the “most-interval” ordering

or orderings,{Ok}. Studies which compared these orderings to those obtained when comparing species’

masses, or related properties6, would be particularly intriguing. It is known empirically, for example,

that as predator mass increases so does average prey mass42,43,44; similarly, in food web models species

generality also correlates to niche value, that is, where the species is found within the location within the

ordering3,45.

Methods

Simulated annealing

Simulated annealing is a stochastic optimization technique that enables one to find a “low-cost” con-

figuration while still broadly exploring the space of possibilities23. This is achieved by introducing a

computational “temperature”T . WhenT is high, the system can explore configurations of high cost

whereas at lowT the system can only explore low-cost regions. By starting athigh T and slowly de-

creasingT , the system descends gradually toward deep minima.

For each iteration in the simulated annealing algorithm, weattempt to swap the position of two

randomly selected species to go from the initial orderingOi (F) to the proposed orderingOf (F). This
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updated orderingOf (F) is then accepted with probability

p =











1 if G (Of ) ≤ G (Oi)

exp
(

−
G(Of )−G(Oi)

T

)

if G (Of ) > G (Oi)
, (3)

whereG (Of ) is the cost after the update andG (Oi) is the cost before the update.

For each value ofT , we attemptqS2 random swaps withq ≥ 250. After the movements are evaluated

at a certainT , the system is “cooled down” toT ′ = cT , with c = 0.99.

Generating randomized networks

To generate an ensemble of random networks, one must first define the constraints of the randomiza-

tion46,47. In our analysis, we preserve the following attributes for each species during randomization of

the food web: (i) number of prey, (ii) number of predators, (iii) number of single links,A → B, (iv)

number of double links,A ↔ B, and (v) whether or not a species is a cannibal.

We employ the Markov-chain Monte Carlo switching algorithm25 and treat single, double, and can-

nibal links separately. For example, two single linksA → B andC → D becomeA → D andC → B,

provided bothA → D andC → B do not already exist in the network and they do not form new double

links. Similarly, two double linksA ↔ B andC ↔ D becomeA ↔ D andC ↔ B, provided that both

A,D andC,B are unconnected by a link in any direction.
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Figure 1: Interval and non-interval food webs. Species (redcircles) are placed along a single dimension

which we denote the resource axis. For each predator (A, B, C,and D) a line is placed above the prey

(resources) it consumes.a, A food web is interval if there exists a permutation of the species along the

resource axis such that for each predator the diet is contiguous. b, A food web is non-interval if no

permutation exists for which all diets can be represented ascontiguous segments.c andd, Illustration

of the ordering algorithm.c, An unordered food web. The resource axis is shown along the bottom and

each red circle represents a species in the ecosystem. For each species in the vertical axis, we represent

predation by a solid horizontal line (for example,C consumesA) and non-predation by the dashed lines

(for example,C does not consumeB). The total number of gaps for this particular ordering isG = 217.

d, An ordered food web. Our algorithm works by swapping the location of two nodes within the ordering

in an attempt to minimize the value ofG. In this particular case, one can find an ordering withG = 0.

It should be noted that this is one of potentially multiple permutations which can give rise to the same

valueĜ = G = 0.
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Figure 2
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Figure 2: Estimated number of gaps for St. Marks and the null models discussed in the text.a, Probability

density ofĜ for two of the null models: randomization of the empirical food web and the generalized

cascade model. The generalized cascade model-generated food webs were specified to have the same

number of speciesS and linkage densityz as the empirical food web.̂Ge is shown by the spike. The

probability of observing such a loŵG value is4.3 × 10−3 and zero for the randomized empirical web

and generalized cascade model, respectively.b, Probability density of̂G for the generalized niche model

and three different values ofc. The generalized niche model-generated food webs were specified to have

the same number of speciesS and linkage densityz as the empirical food web.̂Ge is again shown by

the spike.c, Probability of observingĜGN(c) = Ĝe = 168 for the St. Marks food web. Values less

than0.5 correspond to negativez-scores and thus represent the probabilityPlow of observing a value of

ĈGN as small aŝGe, whereas values greater than0.5 represent the probabilityPhigh of observing a value

of ĜGN as large aŝGe. The95% confidence intervals on the value ofc are given by the regions where

both Plow ≥ 0.05 andPhigh ≥ 0.05 (denoted by the dashed red lines). We find the 95% confidence

interval to bec ∈ [0.625, 0.87]. d, Probability of observinĝGGN(c) = Ĝe = 11 for the Chesapeake Bay

food web. We find the 95% confidence interval to bec ∈ [0.75, 0.92]. The upper bounds ofc = 0.87

andc = 0.92 for St. Marks and Chesapeake Bay, respectively, imply that the empirical food webs are

statistically indistinguishable from our generalized niche model only when there is a very strong bias

toward contiguity of species’ diets.
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Table 1: Empirical and randomized model intervality. For each of the 15 food webs studied, we show

the empirical number of speciesS, linkage densityz, andĜe. For the null model of randomizations of

the empirical food web, we show
〈

ĜR

〉

, z, andp.
〈

ĜR

〉

is the average over at least 100 model food

webs. Thez-score is defined asz =
(

Ĝe −
〈

ĜR

〉)

/σ
ĜR

. The probabilityp represents the probability

of observing a value of̂GR as small aŝGe. This is equivalent to the significance by which one may reject

the null hypothesis.

Food web S z Ĝe

〈

ĜR

〉

z p

Benguela 29 7.00 27 81.38 -11.31 0.0

Bridge Brook Lake 25 4.28 1 50.95 -11.24 0.0

Canton Creek 102 6.80 639 809.99 -6.71 9.8×10−12

Caribbean Reef 50 11.12 310 497.90 -11.72 0.0

Chesapeake Bay 31 2.19 11 48.03 -5.86 2.2×10−9

Coachella Valley 29 9.03 51 117.24 -10.45 0.0

Grassland 61 1.59 10 27.98 -3.98 3.5×10−5

Little Rock Lake 92 10.84 472 1347.03 -25.44 0.0

Northeast US Shelf 79 17.72 747 1291.1 -16.35 0.0

Scotch Broom 85 2.62 35 225.61 -14.74 0.0

Skipwith Pond 25 7.88 26 36.22 -3.32 4.4×10−4

St. Marks 48 4.60 168 343.41 -13.29 0.0

St. Martin 42 4.88 98 204.40 -11.85 0.0

Stony Stream 109 7.60 676 914.84 -8.63 0.0

Ythan 83 4.80 287 512.72 -10.87 0.0
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Table 2: Comparison of empirical data and the generalized cascade model. For the eleven food webs , we

show the empirical number of speciesS, linkage densityz, andĜe. For the null model of randomizations

of the empirical food web, we show
〈

ĜR

〉

, z, andp.
〈

ĜR

〉

is the average over at least 100 model food

webs. Thez-score is defined asz =
(

Ĝe −
〈

ĜR

〉)

/σ
ĜR

. The probabilityp represents the probability

of observing a value of̂GR as small asĜe. This is equivalent to the significance by which one may

reject the null hypothesis. The generalized cascade model is a model for community food webs10, while

Scotch Broom is a source web38. Additionally, the model was developed to reproduce the properties

of cumulative food webs—food webs assembled over an extended period of time, i.e., across multiple

seasons—while Canton Creek and Stony Stream are time-specific food webs with data collected on a

single day30. Ythan has also been reported to be incomplete28,2,10with, for example, an over-abundance

of “top” bird species whose consumers have been excluded28. It has also been shown that the three

latter food webs—Canton Creek, Stony Stream, and Ythan—exhibit topological properties that differ

markedly from those of generalized cascade model-generated food webs10. For these reasons, we do not

compare these four food webs to the second null hypothesis, the generalized cascade model.

Food web S z Ĝe

〈

ĜGC

〉

z p

Benguela 29 7.00 27 78.18 -3.59 1.6×10−4

Bridge Brook Lake 25 4.28 1 47.74 -4.42 5.0×10−6

Caribbean Reef 50 11.12 310 339.64 -0.82 0.21

Chesapeake Bay 31 2.19 11 38.19 -3.08 1.1×10−3

Coachella Valley 29 9.03 51 64.14 -1.04 0.15

Grassland 61 1.59 10 94.81 -5.44 2.7×10−8

Little Rock Lake 92 10.84 472 1641.14 -9.53 0.0

Northeast US Shelf 79 17.72 747 1049.75 -5.05 2.2×10−7

Skipwith Pond 25 7.88 26 41.59 -1.59 0.056

St. Marks 48 4.60 168 257.79 -2.63 4.3×10−3

St. Martin 42 4.88 98 192.69 -8.30 4.1×10−5
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Table 3: Empirical and generalized niche model intervality. Because of the computational effort required,

we investigate six empirical food webs. We show the maximum value ofc for which we cannot reject

the hypothesis that the value ofĜe could have been observed in the generalized niche model.

Food web S z Ĝe cmax

Benguela 29 7.00 27 0.95

Bridge Brook Lake 25 4.28 1 1.00

Chesapeake Bay 31 2.19 11 0.925

Coachella Valley 29 9.03 51 0.925

Skipwith Pond 25 7.88 26 0.95

St. Marks 48 4.60 168 0.85
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