A robust measure of food web intervality

Daniel B. Stouffet, Juan CamacHé, and Luis A. Nunes Amaral
IDepartment of Chemical and Biological Engineering
Northwestern University, Evanston, IL 60208, USA
2 Departament de Fisica (Fisica Estadistica)

Universitat Autbnoma de Barcelona, Bellaterra, Catap8ipain

We introduce a mathematically robust measure for food web itervality. Intervality of

a food web is related to the number of trophic dimensions chaacterizing the niches
in a community. We aim to determine the minimum number of variables required to
describe the factors that influence the trophic organizatia of the species in a com-
munity. We find that empirical food webs are not interval in the strictest sense of the
definition. However, upon comparison to suitable null hypoheses, we conclude that
empirical food webs exhibit a strong bias toward contiguityof prey, that is, toward
intervality. Indeed, we demonstrate that species and theidiets can be mapped onto
a single dimension, an insight that must guide ongoing effds to develop dynamical

models of ecosystems.

Introduction

In spite of their “baroque” complexity, the structure of ral food webs displays a number of remark-
ably simple regularities?3456.7.8.9.10 The existence of these empirical regularities has prothgées-
eral researchers to develop simple models that aim to fglgh# mechanisms that underly them. Three
“static” models, the niche model of Williams & Martinézthe nested-hierarchy model of Catinal.®,
and the generalized cascade model of Stowdfeal. 10, predict key statistical properties of food webs

from a variety of environments, including deserts, rairefts, lakes and estuaries.



Stoufferet al.1® demonstrated that these three models share two fundanmatdanisms which
account for the models’ success in reproducing the emppaiterns: (i) Species form a totally ordered
set in niche space, that is, species can be ordered alongla siche dimension; (ii) Each species has
an exponentially-decaying probability of preying on a giieaction of the species with lower niche
values®.

In spite of the above similarities, the models do differ ignsiicant ways. An important difference
concerns how species’ prey are organized along the singierdiion. In the niche model, species prey
upon a contiguous range of prey. In the nested-hierarchygandralized cascade models, in contrast,
the diets are not restricted to a contiguous range. Thisréifice implies that these models give rise
to networks with different intervality (Fig. 1). Niche mddgenerated food webs are, by definition,
interval while, for the vast majority of cases, food websegated according to the nested-hierarchy and
generalized cascade models are not.

The idea of intervality in complex food webs was introducgd@ohert!, who reported, as did
subsequent studiés21314 that the vast majority of empirical food webs in the literat appeared to
be interval graphs. Significantly, these studies also sstgdethat the probability that a food web was
interval was strongly dependent upon the number of speeg®sented in the food web, decreasing
from approximately one for very small food webs to close tozZer larger webs. The food webs
which were analyzed in these studies typically comprisag f&wv species, placing into question the
finding of intervality for larger and more complex food wéBs.

Importantly, the degree of intervality of a food web is rethto the number of trophic dimensions
characterizing the possible niches in a commuiitMore specifically, one may ask what is the mini-
mum number of variables required to describe the factorsitiflaence the trophic organization of the
species in a community? Is this number the same or diffe@ntifferent communities® 167 |f a
food web is interval, then the ecosystem can be represetdad a single dimension. It has been sug-
gested that a single factor—species’ mass—provides abgiiaoxy for this dimensioh®19.20.21,22
Any departure from intervality has been understood to ingalgitional complexity in the mechanisms
responsible for the structure of the food web.

Recently, the number of higher quality food web data setbbas steadily increasing and these data

have been the focus of a number of recent studies on food wetigie?34>7.810 Thys, we believe that



a more definitive answer to the question of food web intetwatiay be at hand.

In this manuscript we address the question of how “non-aérempirical food webs truly are. To
this end, we define a novel measure of intervality that is maolpest than those already in the literature.
Notably, we find that while empirical food webs are indeed-mdarval, their degree of “intervality”
can be understood agparturbation on an underlyingnterval structure. Our results provide significant

support to the conjecture that ecosystem niches may be mamppe a single dimension.

Food web intervality

In the studies of Cohéf'12 Cohenet al.! and Sugihar®: 1 intervality was defined as a binary vari-
able: a web either “was” or “wasn’t” interval. Recently, twatternative measures have been used to
quantify the “level of diet discontinuity?. The first measure)q;, is defined as the number of triplets
of species with an “irreducible gap” divided by the numbepossible triplets. An irreducible gap is a
gap in a consumer’s diet which cannot be made contiguousubeas the constraints imposed by other
consumers’ diets (Fig. 1).

The second measur€ly,, is defined as the number of chord-less cycles of length fotineé con-
sumer overlap graph. In the consumer overlap graph, twoucoess are connected if they share at least
one prey. An example of a cycle of length four would be wherhlspiecies4d and D share prey with
speciesB andC'. This is a cycle because it is possible to travel from any dritkeofour species to any
other in the consumer overlap graph. If specieand D do not share any prey, or similarly species
B andC do not, this cycle is chord-less and the four diets cannot &dentontiguous simultaneously.
Therefore, an interval food web will have no chordless cyatethe consumer overlap grajgh

Using these two measures, Catiral.® reported that the non-intervality of empirical food webs is
a significant food web pattern. Unfortunately, bdi;., and C'y, have limitations that raise concerns
about the validity of their conclusions for an entire ectsys Specifically, a cycle of length four in
the consumer overlap graph with a chord can still contaiedincible gaps Therefore, Cy, is, at
best, a lower bound for what Catté al.2 intended to measure. Moreover, when computiig.;, the
normalization factor used by Cattaébal.® accounts only for multiphagous consumers, not all species.

An irreducible gap can occur in graphs with as few as thredipmalgous consumers. However, by

concentrating on species triplets, one will inflate the Itesy measure and will not be able to compare
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results for food webs of different sizes and linkage deesitiln fact, Cattiret al.® do little to address
what values ofDg;c; Or Cy, would in fact be statistically significant or represent @éadeviation from
an interval food web.

In contrast to previous studies, we determine here thevialigr of an entire food web. To do this, we
first find the order of species in the food web in such a way asteigate the “most interval” ordering of
the food web. This process yields the best approximationféoe web where the species are organized
along a single dimension. There are various related meansizj one could define “most interval,” so
we discuss our definition and its justification in detail.

In the idealized case of a fully interval food web, each comsts diet is represented by a single
contiguous range. If we consider a non-interval food webattempt to reproduce the idealized web as
closely as possible, we will want all prey of a given preddtotappear” as close together as possible
on the resource axis (Fig. 1). For example, for a given coesuansequence of two adjacent prey, a gap
of one species, and two more adjacent prey (i.e.-PP—PP—..., where “P” represents a prey and
“—" represents a non-prey) is preferable to the same sequenaeith a gap of two species or larger
(e.g.,...—PP——PP—...). Indeed, the former situation would be far more likely givan interval web
which experienced random omissions or changes, such asplogsibly introduced by field sampling.

For a food web grapl with S species, there arg! possible species orderingg; (F) = sfsh ... sk,
with k =1,...,S!. Because of the large number of possible permutationscdrigputationally unfea-
sible to determine the best ordering through enumeratias.for this reason that we employ simulated
annealing, a heuristic technique which significantly reduthe computational effort required to find an
optimal or close-to-optimal solution (see Methods and Batkick et al.23 for details).

When attempting to find the most interval ordering, the dibjeds to minimize the discontinuity
of all predators’ prey (Fig. 1). We thus define a cost functiof©;,) which is the sum of the gaps in a

consumer’s diet
S ny

GO =>_> 45 (1)

i=1j=1
Heren; is the number of gaps in the diet of spec:ia'mdgfj is the number of species in theth gap in
the diet of speciesfor Oy (F). Simulated annealing yields an estimatdor the total number of gaps

G= né}fn {G (Oy)} of the food web'. The smallelG is the more interval the food web is.

"Note that we us€ to refer to the actual minimum number of gaps for a the most¥al ordering of a food web, whereas
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Null hypotheses for food web intervality

As happens in other graph and combinatorial problems theevafiG is of little interesg?; rather, one
needs to assess whether the measured vald@ isfsignificantly different from the expect value for
specific types of graphs. To solve this problem, one mustruiéte the expected value @ under
suitable null hypotheses. We have designed three comptanyamull hypotheses which place different
restrictions upon how consumers’ diets may be organizelimwé food web.

Our first null hypothesis is a randomized version of the eiogiifood web. We perform this ran-
domization using the Markov-chain Monte Carlo switchingaailthm25 and treat single, double, and
cannibal links separately (see Methods for details). Thdomized empirical food web stands as a food
web graph with no constraints placed upon consumers’ didtat is, in the randomization there is no
correlation between the prey of a given species and theamizgtion on the resource axis. We therefore
expect that? for these randomized food webs will be maximal. Comparisathis null hypothesis thus
provides verification of whether there are any structurgllarities in the organization of species’ diets
within empirical food webs.

Our second null hypothesis is food webs generated by thegleszl cascade model with the same
number of specie$ and linkage density as the empirical food webs. Whereas randomization of the
empirical food webs imposed no structural constraints upmrsumers’ diets, the generalized cascade
model does. Each predator may again select their prey abmarolit instead of from the entire resource
axis, their selections are restricted to only those spegitfs niche values less than or equal to their
own. This mechanism leads to a smaller number of gaps foiesgpptaced lower on the resource axis.
Comparison of the empirical data to this null hypothesid pribvide evidence as to whether empirically
observed diets exhibit additional structural constraints

To this point, our null hypotheses will provide an indicatiof whether empirical food webs have a
larger number of gaps than would be expected for randomtstegwith no bias toward contiguity of
prey. In order to quantify any bias toward contiguity of preyempirical food webs, we provide a third
null hypothesis based upon a generalization of the nicheehaidWilliams & MartineZ.

Let us first recall the definition of the niche model. Each ef$hspecies are assigned a niche value

n; drawn from a uniform distribution in the intervé), 1]. A predator; in the niche model preys on a

G refers to the estimate obtained with simulated annealihg. dhly case when we can be sure thiat G is whenG = 0.



ranger; of the resource axis; = njx, wherex is drawn from a beta-distributiop(x) = 5(1—2)8~1.
Heres = (S?/2L) — 1 and L is the number of trophic links in the ecosystem. The centéh@fange
r; is selected uniformly at random in the interyal/2, n]. All species whose niche values fall within
this range are considered prey of spegies

To allow for a tunable bias toward prey contiguity, we gelieeathe niche model in the following
manner. First, we reduce the rangefor a predatorj to r; = cr; = c n;x, wherecis a fixed parameter
in the interval[0, 1]. Because species are distributed uniformly on the rescaxise a predatoy with
ranger; has on average;S prey. The same applies to the reduced raqgeand therefore a predator
hasAk = (rj — 7“3) S = (1 —¢)j;S expected prey unaccounted for. Next, we select thies@rey—
rounded to the nearest integer value—randomly from speomth niche valuen; < n; that are not
already a prey of specigs If ¢ = 0 there is no pressure for contiguity (the web is strictly materval),

while for ¢ = 1 we recover the niche model (the web is thus fully interval).

Empirical results

We study 15 empirical food webs from a variety of environrsetitree estuarine—Chesapeake Bay
St. Marks’, and Ytharf®; five freshwater—Bridge Brook Laké, Canton Creef, Little Rock Lake™?,
Skipwith Pond?, and Stony Stread; three marine—Benguetd, Caribbean Reéf, and Northeast US
Shelf®®; and four terrestrial—Coachella Vallé§ Grassland’, Scotch Broom®, and St. Martir®.

For each empirical food web we firf@. (Table 1). We observe thét. > 0 for all food webs, that is,
none of the webs is interval. The valueséf range froml to 676. To compare these empirical values to
our three null hypotheses, we perform the following steps.dach empirical food web, we generate at
least 100 model food webs corresponding to the respectivéypothesis and obtaity for each model
food web.

We then want to be able to estimate the probability that theev@. appears given each null hypoth-
esis. To do this, we examine not just the meartigf, ., but the probability distribution. We employ
the Kolmogorov-Smirnov teéf to each set of model-generated data and find that we canest tbp
hypothesis that the model-generatédalues are drawn from a normal distribution (Fig. 2). Beeaus
know the distribution which describes the model data, wedigattly obtain an analytical estimate for

the probability of observing a value OF o del-



We first compare the set of empirical food wefg} to the set of randomized food wek$r}
(Table 1). We note that for every food wel, < <C¥R>. To estimate the significance of this difference,
we calculate the probability that the model exhibits so lo@ aalue. We find that the probability is
exceedingly small; for eleven of the 15 food wepsg< 1073% (our computer’s numerical precision).
For the remaining four food webs, the largest probabilitysds= 4.4 x 10~%.

We now compare the set of empirical food webs to the set ofrgéned cascade model-generated
food webs{Fgc} (Table 2). We again find that for every empirical food weh, < <G’GC>. To
estimate the significance of this difference, we calculageprobability that the model exhibits so low
a G value. We find that, for eight of the eleven food webs, the ahbilliy is again exceedingly small
(pec < 0.005). For the remaining three food webs, the higher probabititiyies—0.056, 0.15, and0.21
for Skipwith Pond, Coachella Valley, and Caribbean Reefpeetively—are likely due to their large
directed connectances (definedlgss?) 2.

To this point, our results provide an indication that engaiffood webs are significantly more interval
than would be expected for food webs with no bias toward pmtiguity. We now investigate our
generalized niche model to determine how it compares tortigrical data for different values @fand
therefore different levels of bias toward prey contiguitihe same considerations for applicability that
were discussed for the generalized cascade model holddageheralized niche mod8l Because of
the computational effort required, we have selected opbthe eleven food webs to compare to this
null model. They are Benguela, Bridge Brook Lake, Chesap&aly, Coachella Valley, Skipwith Pond,
and St. Marks. It is worth noting that this list includes twittlee three food webs withhgc > 0.05:
Coachella Valley and Skipwith Pond.

For each of these six food webs, we compare the empirical feeluiG, to the modeI<GGN> for

¢ € [0.5,1.0]. We compare the model and empirical data as before, but feadularly upon the:-
Ge_<érrlodel>
Uémodel

value ofc for which the empirical7 is likely to be observed in the generalized niche model (BigWe

score, wheres = . Using thez-score, we can determiri5% confidence intervals on the

show the results of this comparison in Table 3.

For the six food webs we investigated, we find that the largalstes ofc which provide statistical

2For densely connected food webs, predators typically hes@ter numbers of prey. Because these prey are constrained t
have a niche value less than or equal to the predators, theegtbe directed connectance the greater the probalhiitthese

prey are contiguous, despite the random predation.



agreement with the empirical data are remarkably close & @85 < cuax < 1.00 3. This finding

enables us to quantify in a statistically sound manner ttezvality of a food web; specifically,

Z(Fi) = emax({Fan}) s (2

where{F;n} is the ensemble to model food webs generated according @eteralized niche model
and with the same number of species and connectance of thieadavebF;. Our empirical finding that
7 for the six empirical food webs considered is so large indig#hat natural ecosystems are significantly

interval and consequently there is a strong bias towardgutyt in prey selection.

Discussion

The concept of “niche theory” or “niche space” is a fundamakobncept in study of ecosystems. Niche
space was classically defined as ardimensional hyperspace” withgiven by the innumerable ecolog-
ical and environmental characteristies®. Therefore, each species’ niche is the “result” ofrafactors
acting upon it and the niche represents the functional mdiepmsition of the organism in its community.
The more recent “interpretation” of niche theory, howevelates to the niche providing species an or-
dering or hierarch}?-1%21 This formulation provides a much simpler criterion thart¢hinson’s (1957)
“n-dimensional hyperspace”. Studies have suggested thatibyg species’ mass or size a food web can
in fact be mapped to a single dimensidi-20-21.22.41 Fyrthermore, the placing of species into a single
dimension is a crucial ingredient in many models developatescribe food web structuré 819

Recently, however, discussions as to how interval food virldg are, were renewed by the stark
contrasts between the niche model—and its contiguous rafifgyey—and the generalized cascade and
nested-hierarchy models—and their random pred&fio®ur results allow us to conclusively demon-
strate that natural ecosystems, while not fully interved, significantly more interval than would be ex-
pected when compared to suitable random null hypothesesedJer, we find the empirical food webs
to be statistically indistinguishable from model food weldsose diets are, on average, at a minimum

85% contiguous. The idea that species and their diets can bepselglmapped to a single dimension

3It should be noted that our results may exhibit some undémation of ¢, in particular as noted earlier for densely

connected food webs such as Coachella Valley and Skipwitld .Po



represents a tremendous insight that can guide us on howolzgstbout developing dynamic ecosystem
models.

A number of future questions must be answered before theiguned food web intervality can come
to a close. First and foremost is getting a better understigraf exactly what processes are behind the
deviations from truly interval behavior. While some of thapg within species diets may be due to
interactions not observed during field sampling, we find likaty that all gaps may be attributed to this
factor. It has earlier been noted, albeit on different foabs/from those studied here, that ecosystems
with multiple habitats, for example an estuary, were lelsslyi to be interval than single-habitat food
webshtL Indeed, once cannot expect food webs containing sevebitiatgmto be interval since each
habitat will have its own independent resource axis.

It would likewise be very interesting to examine additiopedperties of the “most-interval” ordering
or orderings{ Oy }. Studies which compared these orderings to those obtaihed eomparing species’
masses, or related properfiesvould be particularly intriguing. It is known empiricajljor example,
that as predator mass increases so does average predffitfdssimilarly, in food web models species
generality also correlates to niche value, that is, whezestiecies is found within the location within the

ordering®*>.

Methods

Simulated annealing

Simulated annealing is a stochastic optimization techaidnat enables one to find a “low-cost” con-
figuration while still broadly exploring the space of podiies?3. This is achieved by introducing a
computational “temperaturel’. WhenT is high, the system can explore configurations of high cost
whereas at lowl” the system can only explore low-cost regions. By startingigit 7" and slowly de-
creasindl’, the system descends gradually toward deep minima.

For each iteration in the simulated annealing algorithm,attempt to swap the position of two

randomly selected species to go from the initial ordedhdF) to the proposed orderin@ (F). This



updated ordering; (F) is then accepted with probability

1 if G(O05) <G(0i)

| , ®)
eXp(_W) it G(Of) >G(0;)

p:

whereg (Oy) is the cost after the update agd O;) is the cost before the update.
For each value df’, we attempt;S? random swaps with > 250. After the movements are evaluated

at a certairil’, the system is “cooled down” t§" = ¢T', with ¢ = 0.99.

Generating randomized networks

To generate an ensemble of random networks, one must firsiediie constraints of the randomiza-
tion*®47. In our analysis, we preserve the following attributes factespecies during randomization of
the food web: (i) number of prey, (ii) number of predators) iumber of single links, A — B, (iv)
number of double linksd < B, and (v) whether or not a species is a cannibal.

We employ the Markov-chain Monte Carlo switching algoritfrand treat single, double, and can-
nibal links separately. For example, two single links— B andC — D becomeA — D andC — B,
provided bothA — D andC' — B do not already exist in the network and they do not form newbtou
links. Similarly, two double linksA <~ B andC < D becomeA «— D andC « B, provided that both

A, D andC, B are unconnected by a link in any direction.
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Figure 1: Interval and non-interval food webs. Species ¢iegles) are placed along a single dimension
which we denote the resource axis. For each predator (A, Bn@ D) a line is placed above the prey
(resources) it consumea, A food web is interval if there exists a permutation of thecge along the
resource axis such that for each predator the diet is canigyub, A food web is non-interval if no
permutation exists for which all diets can be representecbaiguous segmentg andd, Illustration

of the ordering algorithmc, An unordered food web. The resource axis is shown alongdtterh and
each red circle represents a species in the ecosystem. ¢fospecies in the vertical axis, we represent
predation by a solid horizontal line (for exampte ,consumesA) and non-predation by the dashed lines
(for example C does not consumg). The total number of gaps for this particular ordering/is- 217.

d, An ordered food web. Our algorithm works by swapping thatimn of two nodes within the ordering
in an attempt to minimize the value Gf In this particular case, one can find an ordering with-= 0.

It should be noted that this is one of potentially multiplerpeatations which can give rise to the same

valueG = G = 0.
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Figure 2: Estimated number of gaps for St. Marks and the notlets discussed in the tex, Probability
density of G for two of the null models: randomization of the empiricabtbweb and the generalized
cascade model. The generalized cascade model-generatbdvéds were specified to have the same
number of specie$ and linkage density as the empirical food web(, is shown by the spike. The
probability of observing such a lo& value is4.3 x 103 and zero for the randomized empirical web
and generalized cascade model, respectivelrobability density of7 for the generalized niche model
and three different values of The generalized niche model-generated food webs weré#ispdo have
the same number of speciésand linkage density as the empirical food weh(. is again shown by
the spike.c, Probability of observing(}GN(c) = G. = 168 for the St. Marks food web. Values less
than0.5 correspond to negativescores and thus represent the probabitity, of observing a value of
Can as small a€7., whereas values greater th@b represent the probabilit¥,,;.;, of observing a value

of Ggy as large as7.. The95% confidence intervals on the value ©fre given by the regions where
both A, > 0.05 and P, > 0.05 (denoted by the dashed red lines). We find the 95% confidence
interval to bec € [0.625, 0.87]. d, Probability of observing?an (c) = G. = 11 for the Chesapeake Bay
food web. We find the 95% confidence interval tode [0.75,0.92]. The upper bounds af = 0.87
andc = 0.92 for St. Marks and Chesapeake Bay, respectively, imply theempirical food webs are

statistically indistinguishable from our generalizedh@anodel only when there is a very strong bias

toward contiguity of species’ diets.
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Table 1: Empirical and randomized model intervality. Focheaf the 15 food webs studied, we show
the empirical number of specie linkage density:, andG,. For the null model of randomizations of
the empirical food web, we sho@@, z, andp. <GR> is the average over at least 100 model food
webs. Thez-score is defined as = (Ge — <C¥R>) /¢, The probabilityp represents the probability

of observing a value af’y as small as7.. This is equivalent to the significance by which one may tejec

the null hypothesis.

Food web S 2 G, <GR> z p
Benguela 29 7.00 27 81.38 -11.31 0.0
Bridge Brook Lake 25 4.28 1 50.95 -11.24 0.0
Canton Creek 102 6.80 639 809.99 -6.71 Q18 !?
Caribbean Reef 50 11.12 310 49790 -11.72 0.0
Chesapeake Bay 31 219 11 48.03 -5.86 xa@”?
Coachella Valley 29 9.03 51 117.24 -10.45 0.0
Grassland 61 159 10 27.98 -398 8H
Little Rock Lake 92 10.84 472 1347.03 -25.44 0.0
Northeast US Shelf 79 17.72 747 1291.1 -16.35 0.0
Scotch Broom 85 262 35 22561 -14.74 0.0
Skipwith Pond 25 7.88 26 36.22 -3.32 420

St. Marks 48 460 168 343.41 -13.29 0.0
St. Martin 42 488 98 204.40 -11.85 0.0
Stony Stream 109 7.60 676 914.84 -8.63 0.0
Ythan 83 4.80 287 512.72 -10.87 0.0
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Table 2: Comparison of empirical data and the generalizedacie model. For the eleven food webs , we
show the empirical number of specigslinkage density, andG,. For the null model of randomizations
of the empirical food web, we sho{@R>, z, andp. <C¥R> is the average over at least 100 model food
webs. Thez-score is defined as = (Ge - <C¥R>) /¢, The probabilityp represents the probability
of observing a value ofrg as small ag7.. This is equivalent to the significance by which one may
reject the null hypothesis. The generalized cascade medeatiodel for community food web% while
Scotch Broom is a source wé&b Additionally, the model was developed to reproduce theerties

of cumulative food webs—food webs assembled over an extepdaod of time, i.e., across multiple
seasons—while Canton Creek and Stony Stream are timefispiecid webs with data collected on a
single day’°. Ythan has also been reported to be incompfetd®with, for example, an over-abundance
of “top” bird species whose consumers have been exckfdell has also been shown that the three
latter food webs—Canton Creek, Stony Stream, and Ythan+ib#xipological properties that differ
markedly from those of generalized cascade model-genkfaoel websC. For these reasons, we do not

compare these four food webs to the second null hypothésgdneralized cascade model.

Food web S z G, <GGC> z p
Benguela 29 7.00 27 78.18 -3.59 %B0*
Bridge Brook Lake 25 4.28 1 47.74 -4.42 5006
Caribbean Reef 50 11.12 310 339.64 -0.82 0.21
Chesapeake Bay 31 219 11 38.19 -3.08 x1ua3
Coachella Valley 29 9.03 51 64.14 -1.04 0.15
Grassland 61 159 10 9481 -544 2108
Little Rock Lake 92 10.84 472 1641.14 -9.53 0.0
Northeast US Shelf 79 17.72 747 1049.75 -5.05 »xA@"
Skipwith Pond 25 7.88 26 4159 -1.59 0.056
St. Marks 48 4.60 168 257.79 -2.63 4303

St. Martin 42 488 98 192,69 -8.30 4107°
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Table 3: Empirical and generalized niche model intervalgcause of the computational effort required,
we investigate six empirical food webs. We show the maximaines of c for which we cannot reject

the hypothesis that the value 6f could have been observed in the generalized niche model.

A~

Food web S z  Ge  Cmax
Benguela 29 7.00 27 0.95
Bridge Brook Lake 25 4.28 1 1.00
Chesapeake Bay 31 219 11 0.925
Coachella Valley 29 9.03 51 0.925
Skipwith Pond 25 788 26 0.95
St. Marks 48 4.60 168 0.85
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