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Abstract 

 
We demonstrate a method for optimizing desired functionality in real 
complex chemical systems, using a genetic algorithm. The chemical 
systems studied here are mixtures of amphiphiles, which spontaneously 
exhibit a complex variety of self-assembled molecular aggregations, 
and the property optimized is turbidity. We also experimentally resolve 
the fitness landscape in some hyper-planes through the space of 
possible amphiphile formulations, in order to assess the practicality of 
our optimization method. Our method shows clear and significant 
progress after testing only 1 % of the possible amphiphile formulations. 

 
 
Introduction 
 
It is often very difficult to construct a complex chemical formulation that achieves 
some desired functionality. A number of factors contribute to this difficulty, including 
unanticipated complications like chemical side reactions, and miscellaneous practical 
considerations such as the sheer number of independent possibilities that one can 
actually test in the lab. We here demonstrate a genetic algorithm or “GA” (Holland 
1975, Goldberg 1989, Forrest 1993) for optimizing, or at least improving, the 
functionality of an arbitrary chemical system. Our GA shows a clear and significant 
improvement in target functionality, which was obtained after explicitly testing only 
1% of the possible formulations. This work is a proof of principle for the ability to 
formulate or “program” complex chemical systems with functionality that is useful in 
science or industry. 

The functionality optimized in our demonstration is the turbidity of amphiphile 
formulations. Turbidity is a convenient surrogate for other, more desirable 
functionality, such as internal vesicle volume, vesicle longevity in specific 
environments, membrane permeability to selected molecules, or longevity of specific 
chemical reactions encapsulated in vesicles. 

A population of amphiphiles that assembles into vesicles, micelles, oil droplets 
and other structures is a tangible chemical system in the laboratory. A genetic 
algorithm is another, very different kind of complex system which is abstract and 
typically computer-controlled. We couple these two different kinds of complex 
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systems, marrying an abstract and autonomous machine learning method with a 
concrete chemical screening method to create complex chemical systems. 

We are interested in optimizing the properties of amphiphilic systems that make 
vesicles for several reasons. First, these types of vesicles are good chemical models 
for cell membranes (e.g. Menger and Angelova 1998), which are fundamental 
components of all natural living systems. Also, vesicle morphology and functionality 
is variable and sensitive to parameters easily varied in the laboratory during their 
formation, such as chemical composition, pH, chemical environment, local 
temperature, agitation intensity and frequency, and time allowed for formation. 
Furthermore, vesicles have commercial applications in many areas, including drug 
delivery, medical imaging contrast agents, cosmetics, and food processing. Figure 1 
shows two vesicle populations with different chemical composition (all other 
variables held constant), illustrating the variable morphology of the vesicles created in 
this work. 

 
         
 

 
 
 
 
 
 
 
 
Figure1. Two fluorescent micrographs of different vesicle populations produced 
in the experiment demonstrating the diversity of vesicle structures. Bar: 100 
microns. 

Turbidity was chosen as a target functionality to optimize because it is a 
straightforward optical property of a system and because high-throughput assays for 
turbidity can be easily achieved with a spectrophotometer. The turbidity of a vesicle 
solution also has some correlation to the size of vesicles contained therein (Pozharski 
et al. 2001), and giant vesicles are of special value in science and industry (Luisi and 
Walde 2000). 

Here we optimize chemical functionality with a genetic algorithm, because 
genetic algorithms are familiar and straightforward. But the optimization process in 
our method could be achieved equally well with many other machine learning 
processes, such as neural network models that predict optimal formulations from 
previous experimental results (Bull 1999). 

We demonstrate a genetic algorithm optimizing the chemical properties of 
amphiphilic systems, but this method has much broader application. Genetic 
algorithms have been used to optimize other kinds of chemical functionalities, such as 
the ligand binding affinity of compounds synthesized from isocyanides, aldehydes, 
amines, and carboxylic acids (Weber et al. 1995), protease selectivity of hexapeptides 
(Singh et al. 1996), and mildness of shower gels to human skin (Patel 2004). This 
shows the broad scope of the methods demonstrated here. Our work differs from these 
earlier achievements in two primary respects: in our employment of high-throughput 
screening methods, and in our work with amphiphilic systems that exhibit complex 
self-assembling structures like vesicles. 

Our method for optimizing chemical functionality should be contrasted with four 
similar but different methods: (i) optimizing a model or simulation of a chemical 
system, (ii) instantiating a model optimized by a GA, (iii) chemical screening, and 
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(iv) in vitro evolution. In earlier work we optimized the parameters of a dissipative 
particle dynamics simulation of self-assembling amphiphiles (Bedau et al. 2005). 
Although the optimization methods used in that work and here are essentially the 
same, the targets differ because only here do we have the goal to create real chemical 
formulations. This is the critical difference between our present method and 
optimizing merely a model or simulation of a chemical system. 

Genetic algorithms have been used to optimize various kinds of actual physical 
systems, ranging from jet engines to autonomous adaptive agents (Forrest 1993; 
Lipson and Pollack 2000). The typical procedure is for the GA to optimize the 
parameters of some model or simulation of the physical system. Only those systems 
described by the optimal models are ever actually constructed. This procedure is not 
very helpful in the present context because a substantial “reality gap” afflicts models 
of the relevant chemical reaction networks. While there are impressive models of both 
very small populations of molecules displaying a wide range of realistic physical 
properties and larger populations of less-realistic molecules (Jiang et al. forthcoming), 
these models are ineffective for predicting the relevant properties of many chemical 
systems, including those studied here. In our method, the genetic algorithm is applied 
to a population of actual chemical systems realized in the laboratory, and this prevents 
any reality gap from arising. This method also ensures that the optimized chemical 
systems are reproducible, once they are found. 

If one creates a library of chemical compounds that are candidates for some 
desired functionality (e.g., some pharmacological property), one can then often devise 
a way to screen the library for that functionality. Repeated screenings can further 
narrow down exactly which library compounds are optimal. When one works with 
real chemical systems, no reality gap arises. However, the best solution of this method 
will always pre-exist in the library. Our genetic algorithm, on the other hand, is not 
limited by a pre-existing library. Instead, by design, the genetic algorithm explores a 
large space of possible recipes by selectively sampling only a tiny fraction of that 
space. Our approach allows us to find the most fit chemical system without creating 
every possible permutation of similar systems.  

In vitro or directed evolution (Ellington and Szostak 1990; Chapman and 
Szostak1994; Rohatgi, Bartel, and Szostak 1996; Wright and Joyce 1997; Joyce 2004) 
selects polymers based on fitness measurement made on real chemical systems, and it 
uses mutagenic PCR to introduce possible solutions not present in the initial library of 
possibilities. The candidate solutions produced by in vitro evolution are governed by 
random mutagenesis, and therefore the permutation processes governing their 
evolution cannot be programmed by a GA. This is much the same for SELEX 
(systematic evolution of ligands by exponential enrichment) where specific DNA or 
RNA molecules are selected through incremental enrichment from a very large initial 
population (Tuerek and Gold 1990; Irvine, Tuerk, and Gold 1991). The limitations of 
this system are the same as for general chemical screening where the best solution 
must be already present in the initial population. By their design, both in vitro 
evolution and SELEX can be applied only to chemical functionality that is mitigated 
by replicable polymer systems. By contrast, our method in principle could be used to 
program (optimize) arbitrary chemical functionality. 
 In summary, the novelty of our chemical design method is based on the 
coupling of two important properties. First, the method finds a real, replicable 
chemical product. Second, it possesses flexibility both in the physical systems to 
which it is applicable and the search mechanism it uses to explore those systems. 
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Materials and Methods 
 
A library of 16 amphiphiles was compiled. Cholesterol (CHOL),  
1-Palmitoyl-2-Oleoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (Sodium Salt) 
(POPG); 1,2,3-Trioleoylglycerol (Triolein) (TRIO); 1,2-Diphytanoyl-sn-Glycero-3-
Phosphocholine (MEPC); 1-Oleoyl-2-Hydroxy-sn-Glycero-3-Phosphocholine (LPC); 
1,2-Dioleoyl-sn-Glycero-3-Phosphate (Monosodium Salt) (PA); Phytosphingosine 
(Saccharomyces cerevisiae ) 4-Hydroxysphinganine (YPHY); 1,2-Dioleoyl-sn-
Glycero-3-Phosphopropanol (Sodium Salt) (PPRO); 1,2-Di-O-Octadecenyl-sn-
Glycero-3-Phosphocholine (DIPC); L-a-Phosphatidylcholine (Soy) (PC); 16:0 PG or 
1,2-Dipalmitoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (Sodium Salt) (DPPG); 
1,2-Dipalmitoyl-sn-Glycero-3-Phosphocholine (DPPC); 1,2-Dioleoyl-sn-Glycero-3-
Phosphocholine (DOPC); (2S,3R,4E)-2-acylaminooctadec-4-ene-3-hydroxy-1-
Phosphocholine (Egg, Chicken) (SPM) were purchased from Avanti Polar Lipids 
(Alabaster, AL, U.S.A.). DL-all-rac-α-Tocopherol (

� 

!97%) (VITE) and 1,1',2,2'-
Tetramyristoyl Cardiolipin (Sodium Salt) (CARD) were purchased from Sigma-
Aldrich (Milan, Italy). All amphiphiles were diluted to 2.5mM with chloroform 
(Sigma) and stored at -20°C in 4mL glass vials.  

Stocks of amphiphiles in chloroform were removed from the freezer and set on a 
heat block (60°C) for 30 minutes, ensuring that all solutions were free of precipitates. 
Glass sleeves (400uL capacity, Chemtek Analytica) were inserted into an empty 96-
position rack and the full rack was placed on a heating block for 96-well plates 
(VWR, Milan, Italy). Amphiphiles in chloroform were added into the appropriate 
glass sleeves according to a computer-generated well map (see Computer Methods), 
and each plate contained three replicates of each recipe. For example, Well A5 and 
A9 contain the same recipe as Well A1.  

The rack of glass sleeves containing amphiphile mixtures was heated for 10 
minutes before being transferred to a vacuum chamber where it was desiccated for 30 
minutes to remove all remaining chloroform. After drying, 400ul of 50mM sucrose at 
room temperature was added to each sleeve. The rack was covered with a flexible lid 
that contained individual plugs for each sleeve and then vortex agitated for 10 seconds 
and placed on the heat block (60°C) for 60 minutes. The plate was briefly removed 
and vortex agitated again every 20 minutes, including at the end of the heating 
process. 

After removing the lid, 300ul of solution from each well was transferred to a 
corresponding well in a new clear plastic 96 well plate for analysis. This step was 
performed at room temperature. The plastic plate was then placed on the heat block 
(60°C) for 10 minutes before being transferred to the spectrophotometer (Perkin 
Elmer, Wallac Victor3 Multilabel Counter) maintained at 25°C, for turbidity analysis. 

 
Analysis Methods 

Turbidity readings were taken using a wavelength of 405nm with a 0.1 second 
reading time. The measurement was taken at a standard height of 8mm above the 
bottom of the wells. The turbidity readings were used to calculate fitness 
measurements and perform the genetic operations necessary to produce the next 
generation of recipes. 

Four samples with diverse turbidity values were chosen from each plate for 
analysis by microscopy. A 10ul sample from a well was placed onto a standard 
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microscope slide, 0.6ul of 100uM Rhodamine 6G fluorescent dye (Sigma) was added 
and briefly mixed with a pipette tip. Samples were visualized using fluorescence 
microscopy (Specialty Microscopes with a Panasonic GP-KR222 camera and BTV 
Pro software). The pictures were taken with a 25x objective lens. 
 
Computer Methods 
A genetic algorithm (GA) implemented on a personal computer generated all 
amphiphile recipes used in this study. A recipe g consists of a number of “genes” g = 
(g1, g2, …g16), one for each of the 16 amphiphiles in our library, where gi is the 
number of volume units of the ith amphiphile. A single volume unit is 20ul, and the 
total volume in a given recipe is always 100ul, so each recipe g contains between one 
and five gi>0. A generation of the GA was a set of 30 recipes that are produced and 
tested together in the laboratory in multiwell plates. A single well contains a single 
recipe. No recipe can occur more than once in a given generation, and no recipe can 
occur in more than one generation. Each plate contained three replicates of each 
recipe, in addition to some controls. The turbidity readings of already completed 
generations were used to generate the recipes for subsequent generations. 

Given the turbidity measurements of the replicates of a recipe, the recipe’s fitness 
was calculated as simply the mean turbidity minus its standard deviation. By 
subtracting the standard deviation of measured turbidity of the three replicates of each 
recipe from the mean of those measurements, recipes with wildly varying turbidity 
measurements have proportionally lower fitness. This fitness criterion puts a premium 
on the reproducibility of high turbidity. 

The initial generation of recipes was randomly generated, with the constraint that 
cholesterol cannot exceed 40% of a recipe. After the fitness of each recipe in a given 
generation has been measured and recorded, the next generation of recipes (new plate 
of experiments) was created by the GA as follows: 

 (1) Twelve parents are samples without replacement from the pool of all 
previous recipes (experiments) by fitness proportional squared selection, 
according to the following probability: 

� 

p j =
Fj

2

Fi
2

i=1

n

!
  

where j is any recipe, pj is the probability of choosing recipe j, and Fj is the 
fitness of recipe j, as described above.  
(2) Each parent with probability one creates one child by random mutation. 
One volume unit (20ul) is removed from an ingredient bin that had a positive 
value in the parent recipe and one volume unit of another (randomly chosen 
from the remaining 15) ingredient is substituted to create the child recipe. 
(3) Parents were paired in the order chosen (1 with 2, 3 with 4, etc), and these 
pairs with probability one each produced two “crossed” children, according to 
the following algorithm: 

(a) Randomly choose a number, x, from 1-4 and assign it to the first 
parent. This will be the number of volume units (identified as “chips”, 
and indexed with a given amphiphile) taken from the first parent. The 
remaining y chips (where y = 5 - x) are chosen from the second parent. 

(b) Randomly choose x chips from the first parent and y chips from the 
second parent. That chip combination becomes the first crossed child. 
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(c) The remaining chips from the two parents become the second crossed 
child. 

 (4) Six randomly generated recipes (created as described for the initial 
population) were added to each generation, in order to visit unexplored 
regions of recipe space. 

Therefore all generations contained 30 new children (12 mutants, 12 crosses, and 6 
random recipes). The only exception is generation 4, which contains twice as many 
children, as a test of the laboratory feasibility of doubling population size.  

Our GA differs from typical GAs in one important respect: at every generation all 
previously tested recipes are potentially available as parents. Every potential new 
mutant and crossed recipe was screened against previously tested recipes, with new 
recipes generated to replace any duplicates. Thus, the fitness distribution across the 
population in a given generation of the GA is measured across the entire set of recipes 
that have been evaluated so far. In other words, the population size grows each 
generation by the number of new recipes tested (30). 

Once an entire new generation was created, a well map describing each recipe in 
each well of a 96-well plate was produced, for use when creating the new generation 
of experiments in the laboratory.  
 
 
Results 
 
We used a genetic algorithm to optimize turbidity of amphiphile combinations. Each 
amphiphile formulation included up to 5 volume units drawn from a library of 16 
possible amphiphiles (see Materials and Methods), for a total of 16-1+5 choose 5 = 
(16-1+5)!/5!(16-1)! = 15,504 possible recipes that constitute a simplex. We ran our 
genetic algorithm for a total of five generations. Each generation included three 
replicates of 30 recipes, except that in the fourth generation we doubled the number of 
recipes, as a test of the practicality of processing larger generations. So our GA tested 
a total of 180 recipes, or 1.16% of the possible recipes. 

Figure 2 shows a bar plot of all recipes made in Generation 1 (y-axis) and their 
corresponding turbidity (y-axis). The recipes were sorted according to level of fitness. 
As the figure shows, the turbidity levels of the initial population of recipes generated 
at random are variable with a few recipes at high levels.  

The error bars in Figure 2 indicate a standard deviation of three replicates above 
and below the mean. So the error bars provide a visual representation of the 
variability among recipe replicates. Since fitness is calculated as average turbidity 
minus the standard deviation, single recipes that produced variable levels of turbidity 
were penalized. It is clear that while the noise of a recipe was sometimes enough to 
significantly alter its fitness (away from the average turbidity), these cases were rare, 
and the high turbidity of the most fit recipes is apparent. This assured us that the noise 
in our system was acceptable and that our fitness measurement was not over-
penalizing high turbidity recipes due to variability.  

A single recipe can produce different levels of turbidity due to random 
fluctuations in the conditions during the self-assembly process. However, the most 
variable readings observed were due to the presence of large precipitates that formed 
in the preparation. These precipitates varied not only in abundance but also in their 
position on the bottom of the 96-well plate, which lead to highly variable turbidity 
values. Recipes that produced such inconsistencies were penalized by the fitness 
function in our GA. 
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Figure 3 shows the fitness distribution of all recipes over five generations, ordered 
first by generation and then by fitness within a generation. The maximum fitness in 
each generation tended to increase over time, rising from 0.41 in the initial generation 
to 0.60 in the next two generations, and then rising again to 0.72 in the fourth 
generation. The average fitness of each generation also tended to increase over time, 
with mean fitness per generation going from 0.12 in generation 1 to 0.22 in generation 
2, falling a bit to 0.19 in generation 3, and then in the final two generations rising 
again to 0.21 and 0.23. As expected, recipes created by mutation (blue, Figures 3 and 
4) and cross-over (green) from high fitness recipes were consistently more fit than 
those that were randomly generated (purple).  

 

 
Figure 2. Turbidity of all of the recipes in generation 1, sorted by 
fitness (turbidity – standard deviation). The height of each bar is the 
mean of three replicates of a recipe. One standard deviation is shown 
above and one below each bar. A recipe’s fitness is the height of the 
lower error bar. Note that some recipes have substantial error bars, but 
in most cases the standard deviation is less than 20% percent of the 
mean turbidity value. 

 
 

 
Figure 3. Fitness values of every recipe tested. All recipes were 
grouped by generation and then ordered by fitness. Randomly 
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generated recipes are shown in purple, mutant recipes are shown 
in blue, and cross-over recipes are shown in green. Generation 4 
contains twice as many recipes in order to test the practicality of 
processing larger populations. Some recipes have a negative 
fitness value because the standard deviation of their replicates 
exceeded their mean. Note that, because any previously tested 
recipe can potentially parent recipes in any given generation, the 
current population fitness is not reflected merely by the fitness 
of the most recent generation of recipes tested. 

 
Examination of the fitness distribution of the recipes created by mutation and 

crossing gives a clear indication of the success of the GA. By comparing the 
distribution of fitness values across all the recipes in our search space, which is 
approximated by the fitness distribution of a random sample of recipes (Figure 4, 
purple distribution in front) with the fitness distribution of the recipes produced by 
mutation and crossing (Figure 4, turquoise and green distribution in back), it is readily 
seen that the GA spent its time preferentially testing relatively high fitness recepes. 
Fully 43% of the mutant and crossed recipes from the GA have a fitness value that is 
within the top 10% of the recipes chosen at random. Therefore, the GA is very 
successful at identifying untested recipes with relatively high fitness. 
 
 
 

 
 

Figure 4. Distribution of fitness values in two subsets of recipes tested 
by the GA in this study (see Figure 3). The distribution shown in front 
(purple) is a random sample of recipe space; as such, it approximates 
the distribution of fitness values in the entire recipe space. The 
distribution shown behind the random sample contains those recipes 
that the GA created by mutation (turquoise) or crossing (green). 
Comparison of the two distributions shows that the GA preferentially 
searched the high-fitness regions of recipe space.  

 
The highest fitness recipe found was composed of a 1:1:1:1:1 ratio of CARD, 

TRIO, PA, LPG, and DPPG (Figure 6, discussed below). To understand the chemical 
basis for its success and the success of other highly fit recipes, we first analyzed the 
distribution of individual ingredients in the search space. For each amphiphile, a 
sorted fitness graph was made containing all recipes created over the course of the 
five generations containing that amphiphile. Figure 5 shows two of these graphs, for 
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the ingredients TRIO and VITE. These graphs were chosen to represent the variability 
of the effects of ingredients on the fitness of recipes. Every recipe that contained 
VITE had low fitness (<0.3), indicating that it could have a universally detrimental 
effect on the fitness of recipes. Correspondingly, this graph contains very few bars 
since the GA quickly learned this pattern and steered recipes away from those 
containing VITE. The graph of TRIO recipes, however, shows a very broad 
distribution. TRIO was present in the most fit recipe, but it was also present in many 
medium and low fitness recipes. In fact, roughly 30% of recipes containing TRIO had 
fitness <0.2. This shows that TRIO does not have a universally positive effect on 
turbidity, in the presence of other ingredients. The same pattern of recipe distributions 
with variable fitness was observed for almost all ingredients. 

 
 
Figure 5. All recipes tested by the GA containing a given ingredient, sorted by 
fitness. Above: all created recipes that contained the ingredient TRIO, and their 
corresponding fitness. Below: an analogous distribution for VITE. Note that the 
fitness of the highest fitness VITE recipes is much lower than that for TRIO, 
which caused the GA to create many more TRIO recipes (recipes with TRIO 
were much more likely to be chosen as parents). Note also that even though 
TRIO appears in many very high turbidity recipes, it also appears in a large 
number of medium and low fitness recipes. This shows how the contribution of 
TRIO to fitness depends heavily on the other amphiphiles with which it 
interacts. 

 
 

VITE recipes 

TRIO recipes 
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Figure 6. The ingredients in the six most fit recipes, in ascending order left to 
right. These constitute the top 3% of all recipes. The formulation of a recipe is 
represented as a bar indicating the relative proportion of each ingredient. Notice 
that CARD and TRIO appear in each of the recipes. Notice also that half of the 
recipes contain the maximum number (5) of different ingredients, and none 
contains fewer than three. 

 
There are some discernable patterns that help explain observed fitness values. All 

of the six most fit recipes contained CARD and TRIO and none of them contained 
VITE (Figure 6). Lipids such as these with three or more chains may contribute more 
significantly to the turbidity value by adding more surface area to self-assembled 
structures making them larger. For CARD, perhaps the membrane that contains this 
amphiphile are more stable and thus represented in a higher proportion of existing 
vesicles as the time of analysis.  Indeed, CARD has been found to interact with other 
amphiphiles within bilayers to affect both apparent area compressibility modulus and 
lysis tension of the membrane perhaps explaining why membranes that contain 
CARD are more stable (Nichols-Smith et. Al. 2004).  On the other hand, it has been 
proposed that TRIO can act as a spacer between polar headgroups of other 
amphiphiles resulting in an increase in the effectve surface area per lipid molecule 
(Prades et. Al 2003).  A specific interaction between CARD and TRIO has not been 
described. 
 
 TRIO         CARD 

    
 
 
 
Figure 6 also shows that most of the most fit recipes contain close to the maximum 
number of different ingredients possible suggesting that contributions to high fitness 
values typically depend on interactions among different amphiphiles. 

The dominance of CARD and TRIO was confirmed and further elucidated by a 
statistical analysis of the data from all generations, using neural net modeling and also 
using a third order polynomial fit (Forlin et al. 2006). 
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To better understand the topology of the function that assigns fitness to recipes, 
we measured turbidity in a variety of “fitness slice” experiments. A fitness slice 
shows the fitness of recipes in a hyperplane through the space of possible recipes, 
revealing a small piece of the fitness landscape. The fitness slices shown here are 
triangular planes through our 16 dimensional simplex recipe space. Figure 7a shows 
the turbidity of recipes formed by systematically varying the relative proportions of 
SPM, PC, and TRIO. For example, the recipe in the corner of Figure 7a labeled “SPM 
max” consists of 100% SPM; analogously for the PC-max and TRIO-max corners. 
The recipe half way between PC-max and SPM-max consists of 50% each of PC and 
SPM; analogously for the TRIO-PC and TRIO-SPM edges of this fitness slice. In 
similar fashion, the recipes in Figure 7b consist of various proportions of SPM, 
DOPC, and CHOL, but in this case each recipe also contained 10% CARD. The 
recipe in the CHOL-max corner consists of 10% CARD and 90% CHOL; the same 
for the SPM- and DOPC-max corners. The recipe in the middle of the floor consists 
of 10% CARD, 30% SPM, 30% DOPC, and 30% CHOL. We did not test replicates of 
recipes in fitness slices, because the neighboring recipes in a fitness slice are nearly 
replicates. 

(a)  
 

 

(b)  
  

 
Figure 7. Turbidity measured in different slices of the recipe space. All 
recipes consist of recipes with various proportions of different amphiphiles, 
stepping in 10% increments. Notice that (a) indicates a fitness mound in 

TRIO max 

PC max 

SPM max 

DOPC max 

CHOL max 

SPM max 
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recipes containing roughly equal proportions of SPM, PC, and TRIO. The 
saddle visible in (b) indicates that recipes with a preponderance of SPM or 
(to a less extent) DOPC are fairly turbid, while recipes consisting mostly of 
CHOL are not. Note that in the left corner of the fitness slice (b), the recipe 
90% SPM + 10% CARD shows a high fitness, while the similar recipe in 
the left corner of (a) with 100% SPM has much lower fitness.  This 
illustrates how sensitive turbidity is to the exact composition of the 
amphiphile recipes, and might be evidence of a phase transition. 

 
The fitness landscape revealed in Figure 7 shows clear topographical structure: (a) 

a mound and (b) a saddle. This is the kind of structure that a genetic algorithm can 
exploit. It also shows significant surface variation in adjacent sites, presumably 
mainly from experimental noise. Reduction of experimental noise could presumably 
be improved as much as desired by increasing the number of replicates of each recipe, 
thus increasing the testing in the lab. The coarse graining of the fitness landscape’s 
horizontal resolution is due to finite experimental resolution. Experimental resolution 
is determined by the size of the minimal volume units used to construct recipes. 
Resolution can be improved as much as desired by testing recipes at intermediate 
points in the fitness slice, thus increasing the testing in the lab. Note that the 
experimental resolution (10ul volume units) of the recipes in the fitness slices is twice 
that of experimental resolution (20ul) of the recipes tested by the GA.  
 
 
Discussion  

 
We used microscopy to determine the types of aggregate structures that were 

being produced in a number of wells in each generation. We could identify many 
vesicles, both unilamellar and multilamellar, as well as oily droplets. Aggregates such 
as micelles would be too small to detect by optical microscopy. Some structures 
appeared to be a combination of oil droplet and vesicle. These structures, which 
ranged in size from sub-micron to tens of microns in diameter, would contribute 
significantly to the turbidity readings. Vesicle size correlates with turbidity, but this 
correlation drops off when the diameter of the vesicles in the population exceeds 
about 500nm (Pozharski et al. 2001). Many of our vesicles had diameters that were at 
least an order of magnitude larger than this, which could explain why turbidity did not 
completely correspond to vesicle size in our experiment. However there is an evident 
difference in the vesicle size between the low and high turbidity recipes.  

Figure 4 demonstrates that the improvement in fitness found by the GA is not 
merely a result of increased sampling. The most fit recipe, with fitness of 0.72, had a 
fitness almost twice as high as the most fit recipes in Generation 1 (with turbidity of 
0.41). By itself, this does not prove that the GA finds more fit recipes than would be 
found from random sampling, for random sampling will inevitably eventually find all 
high-fitness recipes. The real proof that our GA is intelligently searching the space of 
possible recipes requires comes from comparing the fitness distribution of recipes 
created by mutation and crossover with the fitness distribution of recipes chosen at 
random (Figure 4). 

The fitness slices shown in Figure 7 were designed to include some amphiphile 
combinations thought to have high fitness. Note that none of the recipes tested by the 
fitness slices had fitness higher than the most fit recipe found by the GA (Figures 3 
and 4). This provides evidence that the GA did not overlook any high-fitness recipes 
in the sub-regions of recipe space that it explored. 
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Not only can our procedure select for and produce a winning recipe of 
amphiphiles from a much larger initial pool; it can also point out combinatorial affects 
and interactions among amphiphiles. Once specific recipes of amphiphiles are 
selected by the GA and identified, further detailed laboratory analysis can be 
performed to understand how distinct amphiphilic molecules interact within self-
assembled structures such as vesicles. 

A clear implication of the fitness distributions of all the recipes containing a single 
ingredient (Figure 5) and of the ingredients in the winning recipes (Figure 6) is that a 
recipe’s fitness does not depend in any simple way on single ingredients. Instead, the 
chemical systems the GA created are complex, multidimensional systems with 
significant interactions among component amphiphiles. Another indication of this can 
be seen by comparing the turbidity of the recipe at the front corner of figure 7a with 
that of the recipe at the left corner of figure 7b. The first recipe is 100% SPM, and the 
second is 90% SPM and 10% TRIO. Note that this minimal change in recipe produces 
a very large change in turbidity. Although Figure 6 shows that the highest-fitness 
recipes found by the GA tend to have a large number of ingredients, the fitness slices 
show that recipes with only 2 (Figure 7b) or 3 ingredients (7a) can have relatively 
high fitness, so high fitness does not necessitate the interaction of 4 or 5 ingredients. 
This underscores the utility of optimizing chemical functionality of such systems with 
genetic algorithm.  

One challenge faced by our method is experimental noise and finite experimental 
resolution.  If fitness measurements among replicates are too inconsistent, a GA will 
have difficulty optimizing system properties because fitness measurements will be too 
inaccurate. And if experimental resolution is too low, relevant topography in the 
fitness landscape will be hidden from the GA. The topography revealed by the fitness 
slices (Figure 7) would presumably be much smoother if experimental resolution were 
improved and experimental noise were reduced. In any event, even though fitness 
slices reveal that our GA must cope with both experimental noise and finite 
resolution, the success of optimization process shows that these challenges can be 
managed. 

It is worth noting that the fitness landscape over our recipe space is not 
necessarily smooth everywhere. Some regions might exhibit sharp discontinuities, as 
a result of phase transitions in the aggregations created by slightly different 
amphiphile formulations. Such a sharp transition might explain the difference 
between the recipe at the front corner of figure 7a with that of the recipe at the left 
corner of figure 7b. 

Our work reported here employs a genetic algorithm, but analogous methods 
could employ other machine learning methods involving neural networks, Bayesian 
networks, or other predictive statistical models. Also, these methods could be used to 
optimize a wide variety of chemical functionalities, besides those involving 
amphiphiles, such as those relevant for in vitro evolution. 

The power of a GA increases with increasing population size and number of 
generations, so our method places a premium on being able to quickly create and 
assess a large number of chemical systems. Available high-throughput screening 
assays therefore constrain the chemical systems for which this method is useful. Our 
choice of a 96-well plate format for a population of recipes and automated turbidity 
measurement made our procedure feasible. Other methods for making vesicles, such 
as electro-formation (Angelova and Dimitrov 1986, Dimitrov and Angelova 1988), 
would be prohibitively expensive in terms of materials and laboratory time. This was 
one motivation for developing our simple and high-throughput vesicle-formation 
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process involving only simple lipid film rehydration with applied heat that could be 
executed in a 96-well format. This enables one generation of recipes (one or more 
plates) to be processed in one day, so that reasonably sized optimization tasks could 
be performed in a matter of weeks. 

Current work includes optimizing in recipe spaces that are orders of magnitude 
larger, using generations that are much larger. We are in the process of also 
optimizing the meta-parameters of the genetic algorithm, such as selection function, 
mutation rate, and crossing methods, as well as developing other optimization 
methods such as estimating a model of fitness from the recipes tested so far, and using 
the model to predict which untested recipes might have highest fitness. In addition to 
the spectrophotometry used here, we are employing other high-throughput assays, 
involving fluorimetry, fluorescent microscopy, and microscopy image analysis. 
Current optimization targets include vesicle entrapped volume and membrane 
permeability. 

 
 
Conclusion 
 
We have demonstrated a proof of principle of using genetic algorithm to optimize the 
properties of real chemical systems. Specifically, we have optimized the turbidity of 
vesicle populations by applying a genetic algorithm to combinatorial recipes of 
amphiphiles. Over the course of only five generations in which only 1% of all 
possible recipes were explicitly tested, we see a quantitative increase in the turbidity 
of amphiphile formulations. Variants of this method can be used to optimize a variety 
of other kinds of chemical functionalities. The key bottleneck in our method is the 
time required for laboratory procedures, and a key constraint is available high-
throughput screening methods.  

Our study provides a gateway to a host of related applications. By combining the 
power of machine learning methods with high-throughput chemical screening, desired 
functionalities of complex chemical systems can be automatically designed. This 
work illustrates a transition in the contemporary study of complex systems to practical 
methods for creating real chemical systems with desired functionality.  
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