
Abrupt Behaviour Changes in Cellular
Automata under Asynchronous Dynamics

Damien Regnault

Complex Systems Institute
LIP (UMR CNRS ÉNSL UCBL INRIA 5668)
46 allée d’Italie, 69364 Lyon Cedex 07, France

damien.regnault@ens-lyon.fr

Abstract. We propose an analysis of the relaxation time of the el-
ementary finite cellular automaton 214 (Wolfram coding) under α-
asynchronous dynamics (i.e. each cell independently updates with prob-
ability 0 < α 6 1 at each time step). While cellular automata have been
intensively studied under synchronous dynamics (all cells update at each
time step), much less work is available about asynchronous dynamics. In
particular, the robustness to asynchronism is a feature which is far from
being cleared up. [1,2] have studied double quiescent automata (DQECA)
under fully and α-asynchronous dynamics. [1] did not analyse the behav-
ior of all DQECAs and left some conjectures concerning four automata,
among which automaton 214 which seems to have a specific behavior
under α-synchronous dynamics. Our work partially answers one of those
conjectures, and both illustrates the richness of the behaviours involved
by asynchronism on cellular automata and the challenge of their math-
ematical prediction. Far from being a marginal case study, our analysis
provides a very relevant example of the way the dynamics is affected
by asynchronism and of the mathematical tools which can be used to
predict the asymptotic behaviour of such complex systems.

1 Introduction

The aim of this article is to analyze the asynchronous behavior of the unbounded
finite cellular automaton 214. Cellular automata are widely used to model sys-
tems involving a huge number of interacting elements such as agents in econ-
omy, particles in physics, proteins in biology, distributed systems, etc. In most of
these applications, in particular in many real system models, agents are not syn-
chronous. Depending on the transition rules, the behaviour of the system may
vary widely when asynchronism increases in the dynamics. More generally one
can ask how much does asynchronous in real system perturbs computation. In
spite of this lack of synchronism, real living systems are very resilient over time.
One might then expect the cellular automata used to model these systems to be
robust to asynchronism and to other kind of failure as well (such as misreading
the states of the neighbors). It turns out that the resilience to asynchronism
widely varies from one automata to another (e.g., [3,4]). Only few theoretical



studies exist on the influence of asynchronism. Most of them usually focus on
one specific cellular automata (e.g., [5,6,7]) and do not address the problem
globally. In 2003, Gács shows in [8] that it is undecidable to determining if in
a given automota, the sequences of changes of states followed by a given cell
is independent of the history of the updates. Related work on the existence of
stationary distribution on infinite configurations for probabilistic automata can
be found in [9].

We continue here a study begun in [2] and [1] on the effects of asynchrony on
the global evolution of the system given an arbitrary set of local rules. In partic-
ular we study how asynchronicity affects the relaxation time of such systems. In
[2], the authors carried out a complete analysis of the class of one-dimensional
double quiescent elementary cellular automata (DQECA), where each cell has
two states, 0 and 1, which are quiescent (i.e., where each cell for which every
neighboring cell is in the same state as itself remains in that state) and where
each cell updates according to its state and the states of its two immediate neigh-
bours. They study the behaviour of these automata under fully asynchronous dy-
namics, where only one random cell is updated at each time step. They show that
one can classify the 64 DQECAs in six categories according to their relaxation
times under full asynchronism (either constant, logarithmic, linear, quadratic,
exponential or infinite) and furthermore that the relaxation time characterizes
their behaviour, i.e., that all automata with relaxation times of the same order
present the same kind of space-time diagrams. In [1], this study is extended to
a continuous range of asynchyronism from fully asynchronous dynamics to fully
synchronous dynamics: the α-asynchronous dynamics, with 0 < α 6 1. In this
setting, each cell is updated independently with probability α at each time step.
When α varies from 1 down to 0, the α-asynchronous dynamics evolves from
the fully synchronous regime to a more and more asynchronous regime. As α
approaches 0, the probability that the updates involve at most one cell tends
to 1, and the dynamics gets closer and closer to a kind of fully asynchronous
dynamics up to a time rescaling by a factor 1/α.

The comparison between the fully asynchronous dynamics and the syn-
chronous dynamics in [2] shows that most of the studied automata have dras-
tically different behaviors. The comparison between the fully asynchronous dy-
namics and the α-asynchronous dynamics in [1] shows that new phenomena
could appear under α-asynchronous dynamics. Nevertheless after a time rescal-
ing, most of the studied automata seem to have the same global behavior under
both dynamics. The only automata where these phenomena change drastically
its behavior is automaton 194. Its relaxation time is O(n3) under fully asyn-
chronous dynamics, O( n

α2(1−α) ) under α-asynchronous dynamics and it diverge
under synchronous dynamics. Thus there is a speed up from fully asynchronous
to the α-asynchronous dynamics because of a so called spawning phenomenon
(see [1]). The authors conjecture that four other automata have a specific be-
havior under α-asynchronous dynamics. Cellular automaton 214 studied here is
one of them. It diverges (i.e., it never reaches a fixed point) under both fully
asynchronous dynamics and synchronous dynamics. Nevertheless, we prove here



that the cellular automaton 214 converges to a fixed point in linear time under
α-asynchronous dynamics when α > 0.9999 ; we also exhibit the phenomenon
accountable for this fast convergence. Now, this is the most explicit case to show
the difference between α-asynchronous dynamics and the two other dynamics.

Section 2 introduces the main definitions and presents our main result. Sec-
tion 3 presents the probabilistic tools developed in [1] used in our analysis. The
omitted proofs can be found in the extended version of this paper available on
the website of the author.

2 Definitions, Notations and Main Results

In this paper, we consider the elementary cellular automaton 214 on finite size
configurations with periodic boundary conditions. We recall briefly the notations
and definitions introduced in [1].

Definition 1. An Elementary Cellular Automata (ECA) is given by its transi-
tion function δ : {0, 1}3 → {0, 1}. We denote by Q = {0, 1} the set of states.

We denote by U = Z/nZ the set of cells. A finite configuration with periodic
boundary conditions x ∈ QU is a word indexed by U with letters in Q.

Definition 2. Here is the transition function of cellular automaton 214:
x y z 000 001 100 101 010 011 110 111

δ214(x, y, z) 0 1 1 0 1 0 1 1

We consider three kinds of dynamics for ECAs: the synchronous dynamics, the α-
asynchronous dynamics and the fully asynchronous dynamics. The synchronous
dynamics is the classic dynamics of cellular automata, where the transition func-
tion is applied at each (discrete) time step on each cell simultaneously.

Definition 3 (Synchronous Dynamics). The synchronous dynamics
Sδ : QU → QU of an ECA δ, associates deterministically to each configuration
x the configuration y, such that for all i ∈ U , yi = δ(xi−1, xi, xi+1).

Definition 4 (Asynchronous Dynamics). An asynchronous dynamics ASδ

of an ECA δ associates to each configuration x a random configuration y, such
that yi = xi for i 6∈ S, and yi = δ(xi−1, xi, xi+1) for i ∈ S, where S is a random
subset of U chosen by a daemon. We consider two types of asynchronous
dynamics:
– in the α-asynchronous dynamics, the daemon selects at each time step each

cell i in S independently with probability α where 0 < α 6 1. The random
function which associates the random configuration y to x according to this
dynamics is denoted ASα

δ .
– in the fully asynchronous dynamics, the daemon chooses a cell i uniformly

at random and sets S = {i}. The random function which associates the
random configuration y to x according to this dynamics is denoted ASF

δ .
For a given ECA δ, we denote by xt the random variable for the random config-
uration obtained after t applications of the asynchronous dynamics function ASδ

on configuration x, i.e., xt = (ASδ)t(x).



Definition 5 (Fixed point). We say that a configuration x is a fixed point
for δ under asynchronous dynamics if ASδ(x) = x whatever the choice of S is
(the cells to be updated). Fδ denotes the set of fixed points for δ.

Fact 1 if n is even then F214 = {0n, 1n, (01)n/2}, otherwise F214 = {0n, 1n}.
The configuration 0n cannot be reached from any other configurations whatever
the dynamics is.

Definition 6 (Relaxation Time). Given an ECA δ and a configuration x,
we denote by Tδ(x) the random variable for the time elapsed until a fixed point
is reached from configuration x under an asynchronous dynamics, i.e., Tδ(x) =
min{t : xt ∈ Fδ}. The relaxation time of ECA δ is maxx∈QU E[Tδ(x)].

We can now state our main theorem.

Theorem 2 (Main result). Under α-asynchronous dynamics when 0.9999 <
α < 1, the relaxation time T214 of cellular automaton 214 is O( n

1−α ).

3 Lyapunov functions based on local neighbourhoods

The reader may find more detailed definitions in [1].

Definition 7 (Mask). A mask ṁ is a word on {0, 1, 0̇, 1̇} containing exactly
one dotted letter in {0̇, 1̇}. We say that the cell i in configuration x matches the
mask ṁ = m−k . . .m−1ṁ0m1 . . .ml if xi−k . . . xi . . . xi+l = m−k . . .m0 . . .ml.

Definition 8 (Masks basis). A masks basis B is a finite set of masks such
that for any configuration x and any cell i, there exists an unique ṁ ∈ B that
matches cell i.

Masks bases will be used to define Lyapunov weight functions from local
patterns. It provides an efficient tool to validate exhaustive case analysis.

Definition 9 (Local weight function). A local weight function f is a func-
tion from a masks basis B to Z. The local weight of the cell i in configuration x
given by f is F (x, i) = f(ṁ) where ṁ is the unique mask in B matching cell i.
The weight of a configuration x given by f is defined as F (x) =

∑
i F (x, i).

Notation 1 For a given random sequence of configurations (xt)t∈N and a weight
function F on the configurations, we denote by (∆F (xt))t∈N the random sequence
∆F (xt) = F (xt+1)− F (xt).

The next lemma provides upper bounds on stopping times for the markovian
sequence of configurations (xt)t∈N subject to a weight function F whose average
is a non increasing function of time (a Lyapunov function). Its proof can be
found in [2].

Lemma 1. Let m ∈ Z+ and ε > 0. Consider (xt) a random sequence of con-
figurations, and F a weight function such that (∀x) F (x) ∈ {0, . . . ,m}. Assume
that if F (xt) > 0, then E[∆F (xt)|xt] 6 −ε. Let T = min{t : F (xt) = 0} denote
the random variable for the first time t where F (xt) = 0. Then, E[T ] 6 m+F (x0)

ε .



4 Informal description of 214’s behaviour
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Fig. 1. BCF under different dynamics

Under fully asynchronous dynamics (see figure 1a) a configuration cannot
reached a fixed point from a non fixed point configuration. In fact, the number
of regions (which is also |xt|10 or |xt|01) cannot increase or decrease. So the
number of regions is constant.

Under α-asynchronous, as shown in figure 1(d) the automaton may converge
to the fixed point 0n. According to simulations, the relaxation time appears to
be linear of the size of n and is conjectured to be O( n

α2(1−α) ). The number of re-
gions can increase or decrease because of two new phenomena that have already
be observed in [1]: the spawning phenomenon and the annihilation phenomenon
(see fig. 2). Indeed a pattern 1001 may evolve to 1111 (the number of regions
decrease) and a pattern 0011 may evolve to 0101 (the number of regions in-
crease). Thus the only way to decrease the number of regions is the annihilation
phenomenon. So the key pattern is 1001.

The difficulty of the proof is that a 0-region in the pattern 10011 has the same
probability, α2(1−α), to spawn a new 0-region or to be annihilated and it could
also evolve with probability α(1−α)2 to 10001 (a pattern where the annihilation
phenomenon is no more possible). We have to deal with two problems with the
pattern 10011: the evolution towards 10001 and the fact that the probability
to increase or decrease by one the number of regions is the same. For the first
one, we do not have an answer yet. Now, we consider α > 0.9999 so that this
phenomenon is negligible. The bound is not tight and could be improve by tuning
further the constants. Our aim is to propose an answer to the second problem.
Considering figure 2, one can notice that the 0-regions are close to each other.
In a pattern 10010 an annihilation phenomenon could occur but not a spawning
phenomenon. This is the key phenomenon:

Definition 10. We say that there is a collision when the first 0-region in a
pattern 10010 disappear because of an annihilation phenomenon.

More importantly, if a pattern 10011 evolves to 10101, the two 0-regions are
very close. So the probability that they collide does not seem to be negligible. If
we can prove this than we can find local weights such that the variation of the
local weights for a pattern 10011 is negative.
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Fig. 2. explanation of the convergence

So we are interested in the evolution of a pattern 10101 and we would like
to show that the probability that two 0-regions collide is not negligible. We
have chosen α so we can consider that the pattern 10101 evolves almost under
synchronous dynamics, and that sometimes one cell doesn’t update. Figure 2
shows the evolution of a pattern 10101 when there is no collision with other
0-regions. The black arrows show the most likely evolution (all cells update)
and the dotted arrows show the evolution when one cell doesn’t update. From
these observations, we manage to deduce a weight function which expected
variation is negative at time step. This function and the proof can be found in
the extended version of this article.
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