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Abstract

We present a method based on symbolic dynamics for the detection of synchroniza-
tion in networks of coupled oscillators. The symbolic dynamics are defined using
special partitions of the phase space which prevent the occurrence of certain sym-
bol sequences related to the characteristics of the dynamics. These partitions are
chosen to best distinguish chaotic (but deterministic) dynamics from random ones
in the uncoupled case. In the coupled case, they allow for a rapid detection of quali-
tative types of emerging collective dynamics. As a direct application, we can detect
synchronization of coupled chaotic dynamics on networks from a single randomly
selected node by comparing the transition probabilities with those of the uncoupled
function. The method utilizes a relatively short time series of measurements and
hence is computationally very fast. Furthermore, it is robust against parameter un-
certainties, is independent of the network size, and does not require knowledge of
the connection structure. We present our method for the one-dimensional logistic
map, the two-dimensional Hénon map, and the three-dimensional Lorenz oscillator
as local dynamical function, and for various different coupling structures.
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network

1 Introduction

Synchronization is the prototype of an emerging system level behaviour of in-
teracting dynamical units. This behaviour, in large ensembles of coupled dy-
namical units, is studied in many different fields [1,2], describing synchronous
behaviour in various natural and artificial systems such as Belousov-Zhabotinsky
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reaction [3], neuronal activities in different cortical regions of cat [4], brain sig-
nals during epileptic seizures [5,6], technical systems such as power grids to
achieve secure communication [7], climate behaviour such as solar forcing of
Indian monsoon [8] etc. Depending on the field, synchronization can be a
desired or undesirable behaviour. Detection of synchronization in extended
systems from local measurements has important applications. For example,
during anaesthesia, it is found that the dynamical activity passes reversibly
through a sequence of different cardiorespiratory synchronized states as the
anaesthesia level changes, and thus the synchronization state may be used to
characterize the depth of anaesthesia [9]. Certain pathologies in the neural
system, such as epileptic seizures, manifest themselves by synchronized brain
signals [5], and there is some evidence that they can be predicted by changing
levels of synchronization [6]. It is thus of interest to be able to determine differ-
ent levels of synchronization in a brain area from local measurements, such as
EEG recordings. So far the methods used to detect synchronization are based
on cross correlation function analysis. For multivariate time series, this relies
on the proper embedding of the phase space. Mutual false nearest neighbour or
mixed state embedding methods are also used to detect synchronization. All
these methods have their practical limitations and are very difficult to imple-
ment when the data are noisy and of limited length [10,11]. Here, we describe a
new method to detect synchronization based on symbolic dynamics. Symbolic
dynamics is a fundamental tool for describing a complicated time evolution of
a chaotic dynamical system [12,13]. Instead of representing a trajectory by an
infinite sequences of numbers one watches the alternation of symbols. In doing
so one ’loses’ a great amount of information but some invariant, robust prop-
erties of the dynamics may be kept. A good symbolic dynamics representation
crucially depends on the partition of phase space [14,15].

We define symbolic dynamics based on specific partitions which prevent the
occurrence of certain symbolic sequences characteristic of the dynamical func-
tion. This partition leads to the maximal difference in the permutation entropy
[16] of a chaotic and the corresponding random system [17]. The symbolic dy-
namics defined by such partition has several practical applications [17,18]. One
such application is the detection of global synchronization in coupled chaotic
systems. The synchronized state is detected by simply observing the complete
absence or at least low frequency of particular symbol sequences. The method
uses a very short time series and is hence computationally very fast. Also,
because it compares the symbol sequence of one single unit in the network
with some model behaviour, it does not depend on the size of the network and
is robust against external noise.
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2 Definition of Symbolic Dynamics

We consider a dynamical system

ẋ(t) = F(x(t)) (1)

where x = (x(1), x(2), . . . , x(k)) ∈ R
k, F(x) = (F (1)(x), F (2)(x), . . . , F (k)(x)) is

a k-dimensional vector function of x, and ẋ denotes the time derivative dx/dt.
Let S ⊂ R

k be an invariant set for (1), and {Si : i = 1, . . . , m} be a partition
of S, i.e., a collection of mutually disjoint and nonempty subsets satisfying
∪m

i=1Si = S. The symbolic dynamics corresponding to (1) is the sequence of
symbols {. . . , st−△t, st, st+△t, . . . } where st = i if x(t) ∈ Si.

3 Choice of the Partition

For our applications, a judicious choice of partition is crucial. Suppose the
scalar x(n), 1 ≤ n ≤ k, is available for measurement. For a given threshold
value x∗ ∈ R, define the sets

S1 = {x ∈ S : x(n) < x∗}

S2 = {x ∈ S : x(n) ≥ x∗}

The value of x(n) can be chosen to make the sets S1, S2 nonempty, in which
case they form a non-trivial partition of S. For this special partition, we use
the two-symbol dynamics generated by

st =











α if x(n)(t) < x∗

β if x(n)(t) ≥ x∗.
(3)

The symbolic dynamics depends only on the measurements x(n), yielding a
sequence of symbols determined by whether a measured value exceeds the
threshold x∗ or not. Essentially any choice of the threshold x∗ will yield a
non-generating partition. We say that the set Si avoids Sj if

x(t) ∈ Si ⇒ x(t + △t) 6∈ Sj (4)

We look for a partition which contains avoiding sets. The significance is that if
Si avoids Sj, then the symbolic dynamics cannot contain the symbol sequence
ij, and we say that the transition i → j is forbidden. The essence of our
symbolic dynamics is based on choosing a partition where (4) holds for one
or more sets in the partition. We estimate the transition probability P (i, j)
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by the ratio
∑

t n(st = i, st+△t = j)/
∑

t n(st = i), where n is the count of the
number of occurrences.

For practical calculations using short time series, choice of x∗ becomes im-
portant. The choice should make certain transition probabilities very small.
Clearly, increasing the threshold decreases the probability of occurrence of the
repeated sequence ββ. However, it also decreases the probability of observing
the single symbol β, making it difficult to work with short time series. Hence,
the choice of the threshold is a compromise between these two effects. We use
the natural density defined by the data to choose a threshold. In the following
section we will present the method by taking examples of two different maps.
The method can simply be extended for the continuous systems, where △t has
to be chosen such that for the appropriate x∗, we get certain transition prob-
abilities zero. Note that this can always be done if △t is chosen sufficiently
small. However, measurement conditions impose a lower bound on △t.

4 Coupled dynamics on networks and Global Synchrony

We present the method to detect synchronized chaos in large extended sys-
tems. Consider the following coupled oscillator model,

ẋi(t) = F(xi(t)) + ε
N

∑

j=1

Cij [g(xi(t)) − g(xj(t))] (5)

where xi(t) is the state of the ith node at time t, i = 1, . . . , N , Cij are the
elements of the adjacency matrix C with value 1 or 0 depending upon whether
i and j are connected or not, ε ∈ [0, 1] is the coupling strength. The system
can exhibit a wide range of behaviour depending upon the local dynamics (1)
and coupling structure C, so corresponding symbol sequences observed from
a node can vary widely. However, at the synchronized state xi(t) = xj(t), for
all i, j and t, all nodes evolve according to the rule (1). It follows that when
the network is synchronized, the symbolic sequence measured from a node
will be subject to the same constraints as that generated by (1). And a very
easy way of detecting synchronization of the network is simply by choosing a
random node and calculating the transition probabilities. If these transition
probabilities match with the transition probabilities of the isolated dynamics,
this confirms the synchronization.

A discrete version of the equation (5) is

xi(t + 1) = f(xi(t)) +
ε

ki

N
∑

j=1

Cij [g(xj(t)) − g(xi(t))] (6)
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where, for simplicity and because this occurs in our subsequent applications,
we have used the same function f for the local and the interaction dynamics.
ki is the degree of unit i, that is,

∑

j Cij . For the discrete dynamical system
we can write the criteria for forbidden set (Eq. (4)) as,

f(Si) ∩ Sj = ∅. (7)

We consider logistic/tent, Hénon maps and Lorenz oscillator as the examples
for numerical studies.

5 Detection of Synchronization

For detection of global synchrony we compare the transition probabilities of
any randomly selected node with the transition probabilities of the isolated
function. In the ideal case, we can find a partition that has one or more
forbidden sets for the dynamics of an isolated unit. This,in fact, is the case
for logistic and tent maps. Therefore, in that case, the situation is rather
simple as one has to look for the presence or absence of symbol subsequences
which are forbidden in the dynamics of the map. Thus, we first demonstrate
our results for the tent map. After that, we turn to the Hénon map and
Lorenz attractor as a local dynamical function. Here, one does not have strictly
forbidden transitions for the dynamics of the individual map, but our method
nevertheless applies rather well.

5.1 Synchronization Measures

In this section we write the measures indicating the global synchrony. First
is the variance of the variables over the network, which is given by σ2 =
〈

1
N−1

∑

i[xi(t) − x̄(t)]2
〉

t
, where x̄(t) = 1

N

∑

i xi(t) denotes an average over the

nodes of the network and 〈. . . 〉t denotes an average over time. σ2 drops to zero
when the whole network is synchronized.

We define our symbolic measure for the synchronization as follows. First we
estimate the transition probability P (i, j) by the ratio,

P (i, j) =
∑

t

n(st = i, st+1 = j)/
∑

t

n(st = i), (8)

where n is a count of the number of times of occurrence. The deviation of
P (i, j) of any node is defined as

δ2
i,j =

〈

1

m − 1

m
∑

k=1

[Pk(i, j) − P (i, j)]2]

〉

, (9)
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Fig. 1. The figure shows two different partition for the tent map (10). Subfigure (a)
shows the generating partition, and the corresponding transition possibilities. (b)
shows the partition that gives forbidden transitions (transition 2 → 2 is absent).

where P (i, j) = 1
m

∑

k P 0
k (i, j) is calculated at ε = 0 and k = 1, . . . . . . are

m different sets of random initial conditions drawn from the invariant mea-
sure of dynamics at the node. Note that δ2 is calculated by using only single
node dynamics, whereas calculation of σ2 involves all the dynamics of all the
nodes. Further we will show that our symbolic measure based on the tran-
sition probabilities calculated for a single node is sufficient to detect global
synchrony.

5.2 Tent Map

The tent map is

f(x) = (1 − 2|x −
1

2
|). (10)

Its stationary density on [0,1] is the uniform density, p(x) ≡ 1. If we take the
generating partition [14], which is simply a partition of [0, 1] with dividing
point lp = 1/2 [13], then the above tent map and a random sequence from
a uniform distribution give equal Kolmogorov-Sinai (KS) entropy [19]. For
this partition the iteration takes a trajectory to the left or right set of the
partition with equal probabilities. As we shift the partition from lp = 1/2,
the transition probabilities remain no more the same and for lp = 2/3, i.e.,
S1 = [0, lp], S2 = (lp, 1], the transition 2 → 2 does not occur (see figure 1).
Note that for this partition the difference between the permutation entropy
of the tent map and the corresponding random system is maximal. As the
partition point is moved further to the right in the range a/(a + 1) ≤ lp < 1,
the transition remains forbidden, but the difference between entropies de-
creases, reaching zero at lp = 1. The implication is that a longer time series
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Fig. 2. Detection of synchronization in various networks of coupled maps. Figures
are plotted for coupled tent maps (10). The networks consist of (a) two coupled
maps, (b) a globally coupled network of size 50, (c) a small-world network of size
100 and average degree 30, (d) a scale-free network of size 100 and average degree 15,
(e) a scale-free network of size 200 and average degree 10, and (f) a random network
of size 200 and average degree 8. The horizontal axis is the coupling strength, and
the vertical axis gives the synchronization measure σ2 (–) for the whole network, as
well as the transition probability P (β, β) (◦) calculated using a scalar time series
fro m a randomly selected node. In all cases, the synchronization region (σ2 = 0)
coincides with the region where P (β, β) = 0 and the other transition probabilities
are nonzero, which is the situation for the uncoupled map. Note that in subfigure
(c) there is an interval of ε roughly between 0.65 and 0.8 such that P (β, β) = 0,
but there is no synchronization as P (α,α) (shown by �) is also zero here, unlike
the case for the isolated tent map.

would now be needed as the observed occurrence of the symbol 2 becomes less
frequent. Hence, the optimal partition would be the one for which the self-
avoiding set S2 is largest. Note that the choice of lp in the range (1/2, a/(a+1))
gives a non-generating partition, but has no two-symbol forbidden sequences.
Although some longer sequences may be forbidden, their detection requires
longer time series and more computational effort. For numerical calculations
we use a slightly modified definition of the symbolic dynamics: To two con-
secutive measurements xtxt+1 we assign the symbol α if xt+1 ≥ xt and the
symbol β otherwise [20]. This is equivalent to the symbol sequences defined
by the sets S1, S2 because of the specific partition point x∗; thus the transition
β → β does not occur for the single tent map. The advantage of using this
definition of α, β is that one only needs to check increases and decreases in
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Fig. 3. Figure is plotted for globally connected networks with N = 50 and shows
P (β, β) for Gaussian noise with strength 2% (•) and 5% (◦).

the measured signal, which adds more robustness in case the fixed point is not
precisely known. We evolve (6) starting from random initial conditions and es-
timate the transition probabilities using time series of length τ = 1000 from a
randomly selected node. Note that the length of the time series is much shorter
than would be required by standard time-series methods which use embedding
to reconstruct the phase space for large networks [21]. In our case, however,
the length of the series is independent of the network size. We estimate the
transition probability P (i, j) (i, j being α, β) as given by Eq. (8). Synchro-
nization is signalled when the variance of variables over the network σ2 drops
to zero. Fig. 2 summarizes the results. It is seen in all cases that the region
for synchronization exactly coincides with the range for which P (β, β) is zero
(and other transition probabilities are nonzero; see subfigure (c)). Hence, re-
gardless of network topology and size, both synchronized and unsynchronized
behavior of the network can be accurately detected over the whole range of
coupling strengths using only measurements from an arbitrarily selected node.
The method is robust against external noise. Figure (3) plots P (β, β) when
the measurements are taken in the noisy environment.

For higher dynamical systems, for example Hénon maps and Lorenz attractor,
finding optimal partitions corresponding to the maximal permutation entropy
difference may be more difficult, but the method works for any non-generating
partition and global synchrony is detected by comparing all the transition
probabilities measured from a time series of an arbitrary node with those of
the isolated function.

5.3 Hénon Map

In this section we apply our method to coupled Hénon maps. The Hénon map
is a two-dimensional map given by [22],
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Fig. 4. Figures plots P (β)(+) and P (β, β)(∗) as the function of the partition point
x∗ . The threshold is the point where P (β, β) sharply drops to zero.

x(t + 1) = y(t) + 1 − ax(t)2

y(t + 1) = by(t).

When one introduces the possibility of a time delay, the above equation can
be written as the scalar equation

x(t + 1) = bx(t − 1) + 1 − ax(t)2. (11)

For the parameters, we take the values a = 1.4 and b = 0.3, for which the
Hénon map is known to have a chaotic attractor.

Symbolic dynamics is defined as earlier. We use the natural density defined by
the data to choose a threshold. Figure (4) depicts how the the probabilities of
observing a single symbol β and the repeated sequence ββ change depending
on the value of the threshold x∗. It can be seen that a choice of x∗ roughly in
the range (0.55, 1.20) would be useful, since it renders the sequence ββ very
unlikely without constraining the occurrence of the symbol β. Note that it
is immediate from their definitions that the probabilities P (β) and P (β, β)
will be decreasing as functions of x∗, and will approach zero as x∗ increases;
furthermore, P (β) > P (β, β). It follows that one can find a threshold x∗ for
which P (β) is large compared to P (β, β). Figure (4) shows the sharp decrease
in P (β, β)(∗) at about x∗ ≈ 0.6, so we can take some value near 0.6 as the
threshold, which would yield very small P (β, β) and a large P (β) at the same
time. We evolve (6) starting from random initial conditions, with (11) as
local dynamics, and estimate the transition probabilities P (i, j) as discussed
in the first section, using a time series of length τ = 1000. At the globally
synchronized state xi(t) = xj(t); ∀i, j, t, with all nodes evolving according to
the rule (11), the symbolic sequences measured from a node will be subject to
the same constraints as that generated by (11).

Figure 5 plots the transition probabilities as a function of the coupling strength.
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Fig. 5. The transition probability measure for coupled Hénon maps. The x-axis dis-
plays the coupling strength and the y-axis shows the different transition probabilities
and the measure of synchronization σ2. (a),(b) and (c) are plotted respectively for
globally coupled network with N = 50, a random network and a scalefree network
of size N = 200 and average degree 12. They plot transition probabilities for sym-
bolic sequences of length 3, namely P (α,α, α) (�), P (α,α, β) (•), and P (β, α, α)
(◦). Some of the transition probabilities are close to zero for most of the coupling
strengths, so we do not plot these. The synchronized state is detected when all
the transition probabilities are equal to those of the uncoupled map; i.e. the tran-
sition probabilities at zero coupling strength. (d), (e) and (f) are plotted for the
above networks and they show the standard deviation σ2 (solid thick line) and δ2

(vertical dashed line) for these three transition probabilities of an arbitrary selected
node with respect to the transition probabilities of the uncoupled function (P 0(i, j))
(solid line), i.e for ε = 0. δ2 is calculated for 20 simulations for the dynamics with
different sets of random initial conditions.

We consider the symbolic sequences of length two and three. For length two,
we consider the transition probabilities P (α, α) and P (β, β). For sequences of
length three we have 6 possible transitions, but some of them are very small
(like P (β, β, i) ), so we plot only those transition probabilities which vary
with the couplings. It is clear from the figures that the synchronized state
is easily detected by looking at the transition probabilities of any arbitrarily
selected node. Whenever the transition probabilities are equal to the transi-
tion probabilities of the map (11), the network is globally synchronized. It is
clear from subfigures (d),(e) and (f) that for the synchronized region (zero
σ2), the deviation of transition probabilities from the transition probabilities
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of the uncoupled map (11) is also zero. Here, the deviation of P (i, j) of any
node is defined by Eq. (9). k = 1, . . . . . . are m different sets of random initial
conditions taken between −1.5 and 1.5. In all the figures we get synchroniza-
tion for larger coupling strengths, so the deviation is almost zero there, i.e. all
transition probabilities match completely with those of the uncoupled map.
Note that there are certain regions (small coupling strength range ε < 0.15)
where the nodes do not get synchronized while the deviations are quite small.
That is because for sufficiently small coupling strength, couplings do not af-
fect the behaviour of the individual nodes very much, and so the transition
probabilities also do not differ much from the uncoupled function. However, as
we increase the coupling strength, the transition probabilities become depen-
dent on the couplings. Still, if we look at the small coupling strength regions
carefully we see that not all the deviations are small. For example, although
the deviations of P (β, α, α) (- - -) and P (α, α, β) (-) are very small, the devi-
ation in P (α, α, α) (. . . ) is still large, whereas for the synchronized regime all
deviations are very close to zero.

5.4 Lorenz Oscillator

In this section we apply our method to coupled Lorenz oscillators. The follow-
ing Lorenz oscillator gives chaotic attractor [22],

ẋ = 10(y − x)

ẏ = 28x − y − xz

ż = −(8/3)z + xy (12)

We use only the x variable to detect synchronization. This, in fact, again
exhibits a principal feature of our approach, namely that we only need to
evaluate partial information about the dynamics. Symbolic dynamics is de-
fined as earlier, with △t = 0.2 (section 2). We define the partition (S1, S2) as
(a, x∗], [x∗, b), a, b being the x-range for the Lorenz attractor. x∗ is obtained
as earlier by checking the values of transition probabilities (x(t) ∈ S2, and
x(t + △t ∈ S2), with varying x∗ (Fig. (6)). We evolve Eq. (5) starting from
random initial conditions with (12) as local dynamics, and calculate the tran-
sition probabilities by using (8), from the x time series of length τ = 1000.
Fig. (7) is plotted for the two coupled Lorenz oscillators. Global synchrony
(ẋi(t) = ẋj(t); ∀i, j, t) is detected by comparing the transition probabilities
measured from the x time series of any randomly selected node with those of
the x time series of the uncoupled dynamics (12). σ2 and δ2 are calculated as
given in section 5.1. For ε > 4.5, the deviation of transition probabilities from
those of the uncoupled case (ε = 0) is very small indicating the synchroniza-
tion (σ2 is also zero for this region).
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Fig. 6. Figure plots P (β)(+) and P (β, β)(∗) for the Lorenz oscillator (Eq. (12)).
The threshold for the partition is the point, x∗ ∼ 10, where P (β, β) drops to zero
(with P (β) being non zero).
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Fig. 7. The transition probability measure for coupled Lorenz oscillators. δ2(−−)
(calculated by a scalar from a variable randomly selected node) and all the three
σ2’s corresponding to the x, y and z variables of the Lorenz oscillator are plotted
as a function of the coupling strength.

6 Conclusion

We have presented a simple and effective method based on symbolic dynam-
ics for the detection of synchronization in diffusively coupled networks. The
method works by taking measurements from as few as one single node, and can
utilize rather short sequences of measurements, and hence is computationally
very fast.

The important point of the method is the following: our symbolic sequences
are not drawn from the Markovian, that is, generating partitions which are
the usual practice for symbolic dynamics. Rather, our symbolic sequences are
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generated by non-generating partitions. The partitions which lead to the max-
imal difference between the chaotic dynamics and the corresponding random
dynamics are the best ones for our purpose, and they prevent occurrence
of certain symbol sequences related to the characteristics of the dynamics,
so synchronization can be detected by checking for these forbidden symbolic
sequences. However, for higher dimensional maps, finding the optimal parti-
tion (leading to maximal difference between the chaotic and corresponding
random system) is difficult, but the method works for any non-generating
partition and global synchrony is detected by comparing all the transition
probabilities measured from a time series of an arbitrary node with those of
the isolated function. So long as the synchronized dynamics is identical to the
isolated dynamics, synchrony can be detected, and the fact that certain tran-
sition probabilities are exactly zero makes this procedure especially robust.
The method is independent of the size and the connection architecture of the
underlying network, and also robust against external noise.
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