

Large Fluctuations and Fixation in Evolutionary Games with Non-Vanishing Selection

Mauro Mobilia

Department of Applied Mathematics University of Leeds

University of Oxford, CABDyN Seminar Series, 11/05/2010

Based on the work done in collaboration with M. Assaf (Jerusalem) Reference: arXiv:0912.0157, to appear in EPL (Europhysics Letters)

Intro to Evolutionary game theory

- Basic notions & replicator Dynamics
- Stochastic Dynamics, Evolutionary stability & Fixation

Large fluctuations & WKB theory in evolutionary games

- WKB theory in anti-coordination games
- General WKB treatment & Results
- WKB calculation of the fixation probability in coordination games
- Comparison with diffusion approximations (Fokker-Planck)

Outlook & Conclusion

Need for an accurate theoretical approach to describe large-fluctuation-induced phenomena (stochastic fluctuations and nonvanishing selection), diffusion approx don't work here

What is Evolutionary Game Theory about?

What is Evolutionary Game Theory about?

- Description of complex phenomena in behavioural science and population dynamics (e.g. in ecology, genetics, economics, ...)
- Dynamical version of *classic (rational) game theory*

Some of the founders & pioneers:

- John von Neumann & Oskar Morgenstern (1944), "Theory of games and economic behavior"
- John Nash (1994 Nobel prize in Economics) \rightarrow Nash equilibrium
- John Maynard Smith, "Evolution and the Theory of Games" (1972) → Evolutionary stability

Some reference books:

- J. Hofbauer & K. Sigmund, "Evolutionary Games and Population Dynamics" (1998)
- M. Nowak, "Evolutionary Dynamics" (2006)
- J. Maynard Smith, "Evolution and the Theory of Games" (1972)

Initially, "game theory" was a branch of social sciences and applied maths (von Neumann & Morgenstern, 1944). Goal: find optimal strategies ("utility function").

Evolutionary Game Theory (EGT): different approach where utility function (game's payoff) is the **reproductive fitness** \Rightarrow successful strategies spread at the expenses of the others (Maynard Smith & Price, 1973).

New aspects and interpretations:

- Strategies and their frequencies become population species and their densities
- Oynamics is naturally implemented in EGT

The Replicator Dynamics

Traditional EGT setting: large and unstructured populations with pairwise interactions.

At *mean-field* level, the dynamics is described by the replicator equations for the density x_i of type i = 1, ..., S in the population:

$$\dot{x}_i = x_i(\Pi_i - \bar{\Pi}),$$

where Π_i : average payoff (here = fitness) of an individual of species *i* $\overline{\Pi}$: mean payoff averaged over the entire population

Common choice, with a payoff matrix \mathscr{P} : $\Pi_i = (\mathscr{P}\mathbf{x})_i$ linear function of $\mathbf{x} = (x_1, ..., x_i, ..., x_S)$, $\overline{\Pi} = \mathbf{x} \cdot \mathscr{P}\mathbf{x}$ Important case: 2×2 games with 2 species/strategies (*A* and *B*)

vs	Α	В
Α	а	b
В	С	d

A vs A gets a and B vs B gets d; A vs B gets b, while B gets c

Replicator Dynamics for 2×2 Games

Population comprised of a density *x* and 1 - x of *A* and *B*, resp. Thus, $\Pi_A = ax + b(1 - x)$, $\Pi_B = cx + d(1 - x)$ and $\overline{\Pi} = x\Pi_A + (1 - x)\Pi_B$

$$\dot{x} = x(1-x)[(a-b-c+d)x+b-d] \Rightarrow$$

$$x^* = \frac{d-b}{a-b-c+d}$$
 (Interior fixed point)

- Dominance $(a-c)(d-b) \le 0$: A dominates over B when $a \ge c$ & $b \ge d$. B dominates over A when $c \ge a$ & $d \ge b$
- Coordination (bistability): When a > c and d > b, the asborbing states x = 0 and x = 1 are stable and separated by x* (unstable)
- Anti-coordination (coexistence): When c > a and b > d, x* is stable while x = 0 and x = 1 are unstable, hence A and B coexist

 Neutrality: When a = c and b = d, there is neutral stability for all values of x

Stochastic Dynamics & Moran Process

Evolutionary dynamics involves a *finite number of discrete individuals* \Rightarrow stochastic rules given by the frequency-dependent **Moran process**

 2×2 games: Markov birth-death process of *i* individuals of species *A* and *N* – *i* of species *B* (total size *N* is conserved).

- At each time step, randomly pick 2 individuals
- 1 individual selected for reproduction and the other for death. The offspring replaces the deceased. *N* remains constant
- "Interaction" according to the payoff matrix, i.e. reproduction and death rates depend on the individuals' fitnesses *f*_A and *f*_B.
- Transition *i* → *i*+1 (birth of a *A* and death of a *B*) with rate *T*⁺_{*i*}, while the transition *i* → *i*-1 (birth of *B* and death of a *A*) occurs with rate *T*⁻_{*i*}. *T*[±]_{*i*} are functions of *f*_A and *f*_B

The probability $P_i(t)$ of having *i* individuals of species *A* at time *t* obeys the master equation:

$$\frac{d}{dt}P_{i}(t) = T_{i-1}^{+}P_{i-1}(t) + T_{i+1}^{-}P_{i+1}(t) - [T_{i}^{+} + T_{i}^{-}]P_{i}$$

i = 0 (i.e. all *B*'s) and i = N (i.e. all *A*'s) are **absorbing states** \Rightarrow $i \in [0, N]$ and $T_0^{\pm} = T_N^{\pm} = 0$

For the frequency-dependent Moran Process (fMP):

• Fitnesses of *A* and *B* given by f_A and f_B , resp. 2 contributions: baseline (neutral) contribution + *selection* \Rightarrow $f_A = 1 - w + w \prod_A$ and $f_B = 1 - w + w \prod_B$. Strength of selection measure by $0 \le w \le 1$: $w = 0 \rightarrow$ neutrality, $w = 1 \rightarrow$ only selection • $T_i^{\pm} = \chi_i^{\pm}(f_A, f_B)$ • $\chi_i^{+} = \frac{f_A}{(i/N)f_A + (1-i/N)f_B}$ and $\chi_i^{-} = \frac{f_B}{(i/N)f_A + (1-i/N)f_B} \rightarrow \frac{f_B}{xf_A + (1-x)f_B}$

Markov chain with absorbing boundaries \Rightarrow unavoidable fixation, with system ending with all *A*'s (*i* = *N*) or all *B*'s (*i* = 0)

Stochastic fluctuations alter the predictions of the replicator equations

Evolutionary Stability & Fixation

- Fixation: possibility for a few mutants to take over the entire population
- There is evolutionary stability when the population B's is proof against invasion from mutants A's

Starting with *i* mutants of type *A*, what is the probability ϕ_i^A of ending with all *A*'s (*i* = *N*)? How long does it take? Dependence on *w*?

In the neutral case (w = 0), $\phi_i^A = i/N \Rightarrow$ State with all *B*'s evolutionary stable if *selection* opposes replacement by *A* mutants *A*, i.e. if $\phi_i^A < i/N$

 2×2 evolutionary games are formulated as 1D single-step birth-death processes and thus (formally) solvable:

- $\phi_i^A = \frac{1 + \sum_{k=1}^{i-1} \prod_{l=1}^k \gamma_l}{1 + \sum_{k=1}^{k-1} \prod_{l=1}^k \gamma_l}$, with $\gamma_i = T_i^- / T_i^+ = \chi_i^- / \chi_i^+$
- Unconditional fixation time:

$$\tau_{i} = -\tau_{1} \sum_{k=i}^{N-1} \prod_{m=1}^{k} \gamma_{m} + \sum_{k=i}^{N-1} \sum_{l=1}^{k} \frac{1}{T_{l}^{+}} \prod_{m=l+1}^{k} \gamma_{m},$$

with $\tau_{1} = \phi_{1}^{A} \sum_{k=1}^{N-1} \sum_{l=1}^{k} \frac{1}{T_{l}^{+}} \prod_{m=l+1}^{k} \gamma_{m}$

Large Fluctuations & WKB-based Theory

- Exact expressions: difficult to generalise and analyse
- Common approach: Fokker-Planck approximation (FPA) → good only for weak selection (diffusive dynamics: tractable)
- Severally combination of random fluctuations and non-vanishing selection → Other approach is needed

When there is *metastability* fixation is reached following an "optimal path" obtained by a WKB theory

- ACG: WKB analysis ⇒ quasi-stationary distribution (QSD), probability and mean times of fixation (MFTs)
- CG: WKB calculation of the fixation probability

Anti-coordination Games & WKB Theory (I)

In ACGs (c > a, b > d), after relaxation time t_r , the system converges to the **metastable state** $n_* = Nx^*$. The latter has a very long mean time of decay, τ , that coincides with the (unconditional) MFT

WKB treatment requires: (1) $\tau \gg t_r$, (2) *N* and *Nx*^{*} \gg 1, (3) transition rates of order $\mathcal{O}(1)$ away from the absorbing boundaries

Idea: At time $t \gg t_r$, $P_i(t) \simeq \pi_i e^{-t/\tau}$ for $1 \le i \le N-1$ and $P_0(t) \simeq \phi(1 - e^{-t/\tau})$, $P_N(t) \simeq (1 - \phi)(1 - e^{-t/\tau})$

From fluxes of probability into the absorbing states:

- Unconditional MFT: $\tau = [T_1^- \pi_1 + T_{N-1}^+ \pi_{N-1}]^{-1}$
- Conditional MFTs: $\tau^A = [T^+_{N-1}\pi_{N-1}]^{-1}$ and $\tau^B = [T^+_1\pi_1]^{-1}$
- Fixation probability: $\phi^B = 1 \phi^A = \phi = T_1^- \pi_1 \tau$

This requires the full QSD π_i . Assuming π_i/τ negligible, the *quasi-stationary master equation* (QSME)

$$0 = T_{i-1}^+ \pi_{i-1} + T_{i+1}^- \pi_{i+1} - [T_i^+ + T_i^-] \pi_i$$

is solved using the WKB approach

Anti-coordination Games & WKB Theory (II)

To solve the QSME $T_{i-1}^+ \pi_{i-1} + T_{i+1}^- \pi_{i+1} - [T_i^+ + T_i^-]\pi_i = 0$ away from the boundaries, one uses the WKB Ansatz (x = i/N):

$$\pi(x) = \mathscr{A} e^{-NS(x) - S_1(x)}$$

S(x) is the "action" and $S_1(x)$ is the amplitude, while \mathscr{A} is a constant. With this ansatz and $\mathscr{T}_{\pm}(x) \equiv T_i^{\pm}$, one obtains to order $\mathscr{O}(N^{-1})$

$$\pi(x)\left\{\mathscr{T}_{+}(x)\left[e^{S'}\left(1-\frac{1}{2N}S''+\frac{1}{N}S'_{1}\right)-1\right]\right.\\ \left.+\mathscr{T}_{-}(x)\left[e^{-S'}\left(1-\frac{1}{2N}S''-\frac{1}{N}S'_{1}\right)-1\right]\right.\\ \left.+\frac{1}{N}\left[e^{-S'}\mathscr{T}_{-}'(x)-e^{S'}\mathscr{T}_{+}'(x)\right]\right\}=0.$$

To order $\mathcal{O}(1)$, with the "momentum" p(x) = dS/dx: Hamilton-Jacobi equation, H[x, S'(x)] = 0, where the Hamiltonian is $H(x, p) = \mathcal{T}_+(x)(e^p - 1) + \mathcal{T}_-(x)(e^{-p} - 1)$

Anti-coordination Games & WKB Theory (III)

To solve the QSME $T_{i-1}^+ \pi_{i-1} + T_{i+1}^- \pi_{i+1} - [T_i^+ + T_i^-]\pi_i = 0$ away from the boundaries, one uses the WKB Ansatz (x = i/N): $\pi(x) = \mathscr{A} e^{-NS(x) - S_1(x)}$

To order $\mathcal{O}(1)$: zero-energy trajectories of Hamiltonian H[x, S'(x)]yields $p_a(x) = -\ln[\mathcal{T}_+(x)/\mathcal{T}_-(x)] \Rightarrow$ "optimal path" to fixation is $S(x) = -\int^x \ln[\mathcal{T}_+(\xi)/\mathcal{T}_-(\xi)] d\xi$

To order $\mathcal{O}(N^{-1})$: $S_1(x)$ by solving a differential equation

Constant \mathscr{A} : by Gaussian normalization of the QSD $\pi(x)$ about x^*

- To order $\mathscr{O}(1)$: $S(x) = -\int^x \ln[\mathscr{T}_+(\xi)/\mathscr{T}_-(\xi)] d\xi$
- To order $\mathcal{O}(N^{-1})$: $S_1(x) = \frac{1}{2} \ln[\mathcal{T}_+(x)\mathcal{T}_-(x)]$

Near the boundary x = 0, expand $\mathscr{T}_{\pm}(x) \simeq x \mathscr{T}'_{\pm}(0)$ in the QSME $\Rightarrow \mathscr{T}'_{+}(0)(i-1)\pi_{i-1} + \mathscr{T}'_{-}(0)(i+1)\pi_{i+1} - i[\mathscr{T}'_{+}(0) + \mathscr{T}'_{-}(0)]\pi_i = 0$, yielding $\pi_i = \frac{(R_0^i - 1)\pi_1}{(R_0 - 1)i}$ with $R_0 \equiv \mathscr{T}'_{+}(0)/\mathscr{T}'_{-}(0)$. Similarly with the boundary x = 1

Anti-coordination Games & WKB Theory (IV)

WKB solution for the QSD in the bulk (for $N^{-1/2} \ll x \ll 1 - N^{-1/2}$):

$$\pi(x) = \mathscr{T}_+(x^*) \sqrt{\frac{S''(x^*)}{2\pi N \mathscr{T}_+(x) \mathscr{T}_-(x)}} e^{-N[S(x)-S(x^*)]},$$

Near the boundaries, matching the recursive and WKB solutions yields (with $R_1 \equiv \mathscr{T}'_{-}(1)/\mathscr{T}'_{+}(1)$):

$$\pi_{1} = \sqrt{\frac{NS''(x^{*})}{2\pi}} \frac{\mathscr{T}_{+}(x^{*})(R_{0}-1)}{\sqrt{\mathscr{T}_{+}'(0)\mathscr{T}_{-}'(0)}} e^{-N[S(0)-S(x^{*})]}$$

$$\pi_{N-1} = \sqrt{\frac{NS''(x^{*})}{2\pi}} \frac{\mathscr{T}_{+}(x^{*})(R_{1}-1)}{\sqrt{\mathscr{T}_{+}'(1)\mathscr{T}_{-}'(1)}} e^{-N[S(1)-S(x^{*})]}$$

Thus, $\tau = N \left[\mathscr{T}'_{-}(0)\pi_1 + |\mathscr{T}'_{+}(1)|\pi_{N-1} \right]^{-1}$ and $\phi = N \mathscr{T}'_{-}(0)\pi_1 \tau$ For the fMP:

$$e^{-NS(x)} = [Ax + B(1-x)]^{Nx-N(\frac{B}{B-A})} [Cx + D(1-x)]^{-Nx-N(\frac{D}{C-D})}$$

with A = 1 - w + wa, B = 1 - w + wb, C = 1 - w + wc, and D = 1 - w + wd.

Anti-coordination Games & WKB Theory: Results (I)

- QSD: bell-shaped function peaked at x*. Systematic non-Gaussian effects near the tails, well accounted by the WKB approach
- *MFTs:* exponential dependence on the population size $(Nw \gg 1), \tau \propto N^{1/2} e^{N(\Sigma - S(x^*))},$ where $\Sigma \equiv \min(S(0), S(1))$ For "small" selection intensity, the MFTs grow exponentially as $\tau^A \sim N^{1/2} e^{Nw(a-c)^2/[2(c-a+b-d)]},$ $\tau^B \sim N^{1/2} e^{Nw(b-d)^2/[2(c-a+b-d)]},$ and $\tau = \tau^A \tau^B / (\tau^A + \tau^B)$

Anti-coordination Games & WKB Theory: Results (II)

- For Nw ≫ 1, the MFTS increase monotonically with w, faster than exponentially
- Fixation probability: When w = 0, $\phi^A/\phi^B = x/(1-x)$ depends on initial fraction of mutants. No longer the case when w > 0 (selection):

$$\begin{array}{c} \frac{\phi^{A}}{\phi^{B}} \rightarrow \sqrt{\frac{BD}{AC}} \left(\frac{C-A}{B-D} \right) \\ \times \quad \frac{B^{N\left(\frac{B}{B-A}\right)} D^{N\left(\frac{D}{C-D}\right)}}{A^{N\left(\frac{A}{B-A}\right)} C^{N\left(\frac{C}{C-D}\right)}}. \end{array}$$

⇒ Exponential dependence: ϕ_A/ϕ_B is exponentially large/small when $N \gg 1$, except for $w \ll 1$

Coordination Games & WKB Theory (I)

In CGs, i = 0 and i = N are attractors and x^* is unstable. Starting with *i A* individuals, what is the probability ϕ_i^A that species *A* fixates the system?

 ϕ_i^A is a cumulative distribution function obeying

$$T_i^+ \phi_{i+1}^A + T_i^- \phi_{i-1}^A - [T_i^+ + T_i^-] \phi_i^A = 0, \quad \text{with} \quad \phi_0^A = 0, \phi_N^A = 1$$

Convenient to work with $\mathscr{P}_i = \phi_{i+1}^A - \phi_i^A$ such that $\phi_i^A = \sum_{m=0}^{i-1} \mathscr{P}_i$. When $N \gg 1$, $\mathscr{P}_i = \mathscr{P}(x)$ and the latter obeys

$$\mathscr{T}_+(x)\mathscr{P}(x)-\mathscr{T}_-(x)\mathscr{P}(x-N^{-1})=0.$$

Eq. solved by the WKB ansatz

$$\mathscr{P}(x) = \mathscr{A}_{\mathrm{CG}} \, e^{-\mathcal{N}\mathscr{S}(x) - \mathscr{S}_1(x)}$$

As for ACGs, this leads to $\mathscr{S}(x) = -S(x) = \int^x \ln[\mathscr{T}_+(\xi)/\mathscr{T}_-(\xi)]d\xi$ and $\mathscr{S}_1(x) = -\frac{1}{2}\ln[\mathscr{T}_-(x)/\mathscr{T}_+(x)]$

Coordination Games & WKB Theory (II)

One therefore obtains:

$$\mathscr{P}(x) = \sqrt{\frac{|S''(x^*)|}{2\pi N}} \frac{\mathscr{T}_{-}(x)}{\mathscr{T}_{+}(x)} e^{N[S(x)-S(x^*)]}$$

To leading order when $N^{-1} \ll w \ll 1$:

$$\phi^{A}(x) \simeq \sqrt{rac{N|S''(x^{*})|}{2\pi}} \int_{0}^{x} dy \; e^{N[S(y) - S(x^{*})]}$$

Criterion of evolutionary stability (of "wild species" *B*): $\phi^A(x) < x$, for $x \ll 1 \Rightarrow$ relevant to consider the limit $x \ll x^*$ with finite w Approximation for $N^{-1} \ll x \ll 1$ (where S'(x) > 0) and $Nw \gg 1$:

$$\phi^{\mathcal{A}}(x) \simeq \frac{\mathscr{P}(x)}{e^{\mathcal{S}'(x)}-1}$$

As $\phi^A(x)$ is exponentially small, $\phi^A(x) < x$ and the selection opposes replacement of B's by A's \Rightarrow the state with all B's is always evolutionary stable when w is finite

Coordination Games & WKB Theory: Results (I)

• Fixation probability: $\phi^A(x) \rightarrow 1$ when $x \rightarrow 1$, with $\phi^A(x^*) = 1/2$, and is exponentially small $\phi^A \rightarrow 0$ when $x \rightarrow 0$. "Jump" from finite to exponentially small value of ϕ^A becomes steeper when *w* increases

• Behaviour for $x \ll 1$: When *w* is finite, $N \gg 1$ and $x \ll 1$, the exponentially small value of $\phi^A(x)$ is approximated by $\phi^A(x) \simeq \frac{\mathscr{P}(x)}{e^{S'(x)}-1}$

Coordination Games & WKB Theory: Results (II)

Comparison with Fokker-Planck: Fixation probability often approximated using the Fokker-Planck Equation (FPE). This diffusion approx. yields $\phi_{\text{FPE}}^{\mathcal{A}}(x) = \frac{\Psi(x)}{\Psi(1)}$ with $\Psi(x) = \int_0^x e^{-\int_0^y \Theta_{\text{FPE}}(z) dz} dv$ and $\Theta_{\text{FPE}}(x) = 2N \left(\frac{\mathcal{T}_{+}(x) - \mathcal{T}_{-}(x)}{\mathcal{T}_{+}(x) + \mathcal{T}_{-}(x)} \right)$ Often used within linear noise approx., where $\phi_{\ell \text{FPE}}^{A}(x) = \frac{\Psi(x)}{\Psi(1)}$ with $\Theta_{\ell \text{FPE}}(x) =$ $2N(x-x^*) \left(\frac{\mathcal{T}'_+(x^*) - \mathcal{T}'_-(x^*)}{\mathcal{T}_+(x^*) + \mathcal{T}_-(x^*)}\right)$ instead of $\Theta_{\rm FPE}(x)$ To leading order, WKB result can be rewritten as $\phi^A(x) \simeq \frac{\Psi(x)}{\Psi(1)}$, with $\Theta(x) = N \ln [\mathcal{T}_+(x) / \mathcal{T}_-(x)]$ instead of $\Theta_{\rm FPE}(x)$

Coordination Games & WKB Theory: Results (III)

- Excellent agreement between numerics and WKB results for any x and w > 0
- FPE in good agreement with WKB and numerics when w is small (and/or $x \simeq x^*$).
- However, exponentially large deviations when w and N are raised and x deviates from x*

As $\Theta(x) - \Theta_{FPE}(x) \sim N(w\Delta x)^3$ and $\Theta(x) - \Theta_{\ell FPE}(x) \sim N(w\Delta x)^2$ $(\Delta x = x - x^*) \Rightarrow$ Exponentially large errors in $\phi_{FPE}^A(x)$ and $\phi_{\ell FPE}^A(x)$ when $w \gtrsim N^{-1/3}$ and $w \gtrsim N^{-1/2}$, resp.

Outlook & Conclusion

Presentation of a WKB-based approach allowing to compute large-fluctuation-induced phenomena in evolutionary processes

- Account naturally for large fluctuations and non-Gaussian behaviour
- Application to a class of evolutionary games modelling: *combined effect of stochasticity and non-linearity (selection)?*
- Metastability in Anti-Coordination Games: calculation of the QSD, ϕ and MFTs \Rightarrow when w > 0 and $N \gg 1$, non-Gaussian QSD and MFTs grow exponentially with N
- ϕ^A in Coordination Games: asymptotically exact results for $\phi^A \Rightarrow$ exponentially small when w > 0 and $N \gg 1$
- Comparison with Fokker-Planck: FPE is only accurate around x* and for vanishingly small selection strength w
- Generalization to other rules/interactions
- Method can be adapted to study non-exactly solvable problems (e.g. 3 × 3 games)