Stability, complexity and diversity in random replicator
models
of ecology and evolutionary game theory

Tobias Galla

b
MANCHESTER. !’i‘-. ?
U2

1824

International Centre
for Theoretical Physics
Trieste, Italy

University of Manchester
UK



Game theory

1944: von Neumann and Morgenstern
"Theory of games and economic behaviour’

1950s: John Nash, equilibrium concepts

Nash equilibria seen as only viable outcomes of careful
reasoning of rational players

1982: John Maynard Smith: ’Evolution and the theory of
games’, dynamics of a population of irrational players

Nobel prizes:
1994: J.C. Harsanyi, John Nash and R. Selten
2005: R. Aumann, Th. Schelling



A game

IS played by a (finite) number of players z, vy, z,...
each of them has a set of strategies X, Y, Z,...

and each is paid a payoff depending on his choice of
strategy and on the choice of the other players

different players might have different strategy sets

symmetric versus asymmetric games



E.g. prisoners dilemma

Matrix games

payoff for player 1 2 COo- 2 defects payoff for player 2 2 Co- 2 defects
operates operates
1 co-operates 4 1 co-operates 4 5
1 defects 5 1 defects 0 3




Matrix games

Another example: rock-scissors-paper game

rock > SCISSOrs, Scissors > but > rock




Matrix games

#® these were all so-called symmetric games: only one type of
player

$ now an asymmetric game

Battle of the sexes:

# strategies for male: run or stay

# strategies for female: coy or fast

# successful raising of offspring: payoff G for each

# parental investment —C' shared if male stays, otherwise borne
entirely by female '

# |ona enqaaement: cost —E for both



Battle of the sexes

# successful raising of offspring: payoff G for each

» parental investment —C shared if male stays, otherwise
borne entirely by female

# |ong engagement: cost —E for both

payoff for male female coy | female fast

male runs 0 (r

male stays G-%-E G-%

payoff for female | male runs male stays

female coy 0 G-$£—-E

female fast G—C G — %




Pure strategies

Assume player X has the choice between N pure
strategies, labelled by

Then a mixed strategy corresponds to a vector

= (z1,...,ZTN), ZLE-;;ZI
i

z; is the probability to play pure strategy e;*.
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Mixed strategies

# in general will have payoff matrices a;; and b;;

# if player X plays mixed strategy 2 and Y plays 4 then
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Nash Equilibria

A Nash equilibrium is a point (£ *, 4 *) such that no player has an
incentive to change strategies unilaterally given the other player’s
choice of strategy:

# 1 *is the best choice for X given Y plays ¢ *

® ¢ * is the best choice for Y given X plays x *
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Replicator dynamics

replicator equations

d

Zai(t) = wilt)[fila(t)] - (1)

» evolutionary game theory
» learning dynamics, e.g. acquisition of grammar
» chemical reactions

» interacting species, eco-systems



Replicator dynamics

# (differential equations on a simplex S
# population divided into N types i = 1,..., N with proportions z;

# fitness of i: f;(t) = filz1(2),...,zN(1)]

The associated replicator equation reads

= fi(t) — f(2)

with f(t) = 3, z;(¢) f;(t) the mean fitness



Replicator dynamics

# species fitter than the average prosper

# species less fit than the average decrease in
concentration

® > .z; =1 conserved in time




One population models

# only one type of players X

# e.ginthe prisoner’s dilemma or rock-scissors-paper
game

#® symmetric games

£ (t) = z4(t) (filz1(2), ..., 2N (t) — F (1))



Multi-population models

#» multiple types of players X, Y, Z,... taking different
positons in the game

# e.g. male-female in battle of sexes, buyers-sellers in an
economy

#® asymmetric games

Gi(t) = zi(t) (fEn (), ...un(0)] - F(2))
Gi(t) = ui®) (Flo@),....zm(®) - F9(2)



Replicator dynamics

Fixed points:
0= (fi — f)

It turns out

» stable fixed points are Nash equilibria

# but Nash equilibria are not necessarily stable FP



Fixed point distribution

# fraction ¢ of surviving species, z; > 0

# distribution ~ truncated Gaussian+(1 — ¢)d(x)

15

px) 1t




Replicator dynamics

2i(t) = zi(t) (filz1(D),. - .,

# games between two players

f Llyeeeyd

# games between p-players

fi[mli" y L Z

'E-p 1

zn(t)) — f(¢))

ZJ.?T*J
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Replicator dynamics
study “all” matrix games random payoff matrices

t (Z Tij;(t) T(t))
j_

® J;; Gaussian couplings, J-E- =1/N

vith

® symmetry of couplings J;;J;; = I'/N
# diagonal elements J;; = —2u

# u denotes 'co-operation pressure’, drives the system into the

simplex
Y m(t)=N Vi
i

[Opper et al]



Co-operation pressure

[Peschel, Mende, The Prey-Predator model, Springer, 1985]

Fiz, 84 The inflnenee of 4 upon zoures and sinls behaviouy



Literature

» statistical mechanics of large one-population systems
with random couplings

& QOpper/Diederich PRA '89, PRL '92

& Fontanari, De Oliveira PRL ‘00, PRE ‘01, PRL '02, EPJB ‘03, PRE '04
(all replica)

& Biscari/Parisi J.Phys. A '95 (1RSB)

#® bi-matrix games
& Berg/Engel PRL 99
& Berg/Weigt Europhys. Lett '99
& Berg PRE 00



Random replicator equations

zi(t) = zi(t) (Z Jijzi(t) — T(t))
j_
with random Gaussian couplings

% can be solved with techniques from spin glass physics in the
thermodynamic limit N — oo

% path-integrals, dynamical generating functionals
% result: stochastic process for a representative strategy/species

% fixed point ansatz gives closed equations for persistent OP

[Opper et al]



Generating functional analysis

Study this with generating functionals.

# advantange over replica:
» no Lyapunov function required
» so that GFA can be used also for asymmetric couplings
s replica theory only for symmetric couplings

# closed laws for dynamical order parameters:
s correlation function C(t,t") = N7t (z;(¢)z:(¥))

s response function G(t,#) = N=1 Y, <%§%>
s Lagrange multiplier f(¢)




Generating functional analysis

effective species process

o(t) = x(t) (—Eum{t] — Fp{p; D /t dt'G(t, t"YC(t, VP 2z(t") + n(t) — f(t) + h(t j)

self-consistent problem

C(t,t) = (z(®)z(t)),, G(t.t)= <§;f((?)> L (2(), =1
{n(t)} is coloured noise with correlator

(n®n(¥)), = 50y

retarded interaction jtu dt'G(t, t"\CP~2(t, t)z(t")



Some results

(r'=0,3,1)
1
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Ergodicity breaking - sensitivity to initial
conditions

location of phase transition
from theory

i

2 |
8 |
15F o, | -
|
B |
2 |
d/iq 1t k | -
O |
|
. |
05 F . | -
O |
L ‘ | J
L . : '
[] 4 ““CS—LEW
0 0.5 1

u



Typical trajectories
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Find ergodicity breaking also for p = 3:
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But if p = 3 but quadratic self-interaction find collapse of extensivity
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Bi-matrix games

Payoff matrices a;;, b;; with

a2 =b2 =1/N,  agb; =T/N

Berg/Weigt [Europhys. Lett. 48 129 (1999)]:

S = % In (#Nash)

0.4

0.3

a1



Bi-matrix games:

two-population random replicators

#; = xi(t) (—2113?; — Zagj-y_; — ym)

d

v = y(t) (—EHL’_;‘ + Zbiji‘i — H?")
i

generating functionals lead to two coupled effective processes

& = x(t) (—Eu;rr—l— Ffdt’Gy{.t, tNz(t") — v* — -rf‘[tj)

g = ylt) (—Euy-l—l"/dﬂ@z{t, t"y(t") — ¥ — ?:""‘{ﬁ])

with

(n*(O)n=(t")) = )y )y  (m¥(n(t)) = (z(t)=(t'))



Dynamic instability and number of Nash equilibria

0.4 » r :
0.3 entropy zero,
one NE
0.2
S e
0.1
e
entro ositive, | t L L .
mF;ynP NE O 0.5 1 1.5
Y u [TG, Europhys. Lett. 2007]

dynamic instability coincides with onset of

exponential number of NE




Counting the Nash Equilibria
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Statistical mechanics
of simple model eco-systems

work with
Yoshimi Yoshino and Kei Tokita (Osaka)

J. Stat. Mech. (2007) P09003

Phys. Rev. E (2008) to appear



The model

two ‘trophic levels’:

Resources (water, light, ...




Model definitions

two ‘trophic levels’:
» N species 1=1,...,N P

» P resources U = L,...

fitness of fo = Z Jiix; + Z ngu

species i

abundance of \4
-5

resource U AF (t) — Ag



Model definitions

resource U

sbundance of () — Al 7 el (1)

abundance in absence
of species

H : :
£ random variable of variance |

use of resources

2
Ag random variable of variance O

[see also A De Martino and M Marsili J. Phys. A 39 R465 (2007)]



E.g. phase diagram in dependence of humber of
resources and their variability
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P
Use of resources H = ! Z (A (£))
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Robustness of the model:
distribution of species-resource couplings
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Species abundance distributions in replicator models
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[Yoshino, Galla, Tokita, PRE (2008) to appear]

[Tokita, PRL 2004]



Conclusions

» used techniques from statistical physics used to study replicator

systems with random interaction matrices

» transition between ergodic-stable and non-ergodic-unstable phase

» order parameters computable in stable regime

» extension to simple model-eco system with two trophic levels

» phases with perfect exploitation of resources



